

iSAQB Glossary of Software Architecture
Terminology

Gernot Starke, Ulrich Becker, Carola Lilienthal, Michael Mahlberg,
Simon Kölsch, Alexander Lorz, Andreas Rausch, Roger Rhoades,
Sebastian Fichtner, Phillip Ghadir, Mahbouba Gharbi, Matthias
Bohlen and Mirko Hillert

This book is for sale at http://leanpub.com/isaqbglossary

This version was published on 2020-11-22

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have the right book and build
traction once you do.

This work is licensed under a Creative Commons Attribution 4.0 International License

http://leanpub.com/isaqbglossary
http://leanpub.com/
http://leanpub.com/manifesto
http://creativecommons.org/licenses/by/3.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Tweet This Book!
Please help Gernot Starke, Ulrich Becker, Carola Lilienthal, Michael Mahlberg, Simon Kölsch,
Alexander Lorz, Andreas Rausch, Roger Rhoades, Sebastian Fichtner, Phillip Ghadir, Mahbouba
Gharbi, Matthias Bohlen and Mirko Hillert by spreading the word about this book on Twitter!

The suggested hashtag for this book is #isaqbglossary.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

#isaqbglossary

http://twitter.com
https://twitter.com/search?q=%23isaqbglossary
https://twitter.com/search?q=%23isaqbglossary

Contents

Introduction . 1
Personal Comments . 1
Terms Can Be Referenced . 2
License . 3
Acknowledgements . 4
Contributing . 4

Glossary of Terms . 5

Translations . 59
Translations English to German . 59
Translations German to English . 63

Categories . 67

References and Resources . 68

Appendix A: The iSAQB e.V. Association . 73

Appendix B: About the Authors . 74

Appendix C: About our Cause . 78

Introduction
This book contains a glossary of software architecture terminology.

It can serve as a reference for preparation for the iSAQB e.V. examination Certified Professional
for Software Architecture - Foundation Level©.

Please be aware: This glossary is not intended to be a primer or course book on software
architecture, just a collection of definitions (and links to further information).

Furthermore, you find proposals for translations of the iSAQB terminology, currently between
English and German (and vice-versa).

Finally this book contains numerous references to books and other resources, many of which we
quoted in the definitions.

This book is work in progress.

Errors or omissions can also be reported in our issue tracker on Github¹, where the authors
maintain the original sources for this book.

Personal Comments

Several of the terms contained in this book have been commented by one or several authors:

Comment (Gernot Starke)
Some terms might be especially important, or sometimes there are some subtle aspects
involved. Comments like these give a personal opinion and do not necessarily reflect
the iSAQB.

¹https://github.com/isaqb-org/glossary/issues

https://github.com/isaqb-org/glossary/issues
https://github.com/isaqb-org/glossary/issues

Introduction 2

Terms Can Be Referenced

All terms in the glossary have unique URLs to the (free) online version of the book, therefore
they can be universally referenced, both from online- and print documentation.

Our URL scheme is quite simple:

• The base URL is https://leanpub.com/isaqbglossary/read
• We just add the prefix #term- in front of the term to be referenced, then the term itself,
with hyphens (“-“) instead of blanks.

For example our description of the term software architecture can be referenced (hyper-
linked) with https://leanpub.com/isaqbglossary/read#term-software-architecture

Nearly all terms are hyperlinked with their full names, with very few examples that are refer-
enced by their (common) abbreviations, like UML or DDD.

Introduction 3

License

This book is licensed under a Creative Commons Attribution 4.0
International License². The following is only a brief summary and
no substitution for the real license.

The cc-4.0-by license means that you might:

• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material for any purpose, even commercially.
• The licensor cannot revoke these freedoms as long as you follow the license terms.

You must:

• Give appropriate credit,
• Provide a link to the license (https://creativecommons.org/licenses/by/4.0/)), and
• Indicate if (and which) changes were made with respect to the original.

²https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Introduction 4

Acknowledgements

Several parts of this glossary have been contributed by the following volunteers and sponsors:

• The definitions of about 120 terms have been donated by Gernot Starke, originally compiled
for one of his books³.

• A number of definitions in context of system improvement and evolution was contributed
by the aim42⁴ open source project.

Contributing

Contributions are welcome
In case find errors, omissions or typos, or want to contribute additional content - please feel free
to do this via one of the following ways:

1. Open an issue in our Github repository
2. Fork the repository and create a pull request.
3. Discuss topics on the books’ Leanpub feedback page
4. Write an email to the authors, also from the books’ website
https://github.com/isaqb-org/glossary/issues
https://leanpub.com/isaqbglossary/feedback
https://leanpub.com/isaqbglossary/email_author/new

Your input is highly appreciated by the authors.

³https://leanpub.com/esa42/
⁴http://aim42.github.io/

https://leanpub.com/esa42/
http://aim42.github.io/
https://github.com/isaqb-org/glossary/issues
https://leanpub.com/isaqbglossary/feedback
https://leanpub.com/isaqbglossary/email_author/new
https://github.com/isaqb-org/glossary/issues
https://leanpub.com/isaqbglossary/feedback
https://leanpub.com/isaqbglossary/email_author/new
https://leanpub.com/esa42/
http://aim42.github.io/

Glossary of Terms
Abstraction

The process of removing details to focus attention on aspects greater importance. Similar in
nature to the process of generalization.

A view of an element that focuses on the information relevant to a particular purpose, ignoring
additional or other information.

A design construct as in “Building blocks should depend on abstractions rather than on imple-
mentations.”

Category: Design-Principle

Abstractness

Metric for the source code of object oriented systems: The number of abstract types (interfaces
and abstract classes) divided by the total number of types.

Category: Metric

Accessibility Quality Attribute

Degree to which a product or system can be used by people with the widest range of characteris-
tics and capabilities to achieve a specified goal in a specified context of use. Is a sub-characteristic
of: usability. Refer to ISO 25010⁵ website.

Category: Quality, ISO 25010

ACL

Access Control Lists are away to organize and store permissions of a principal for a specific entity.
Beside implementations on an application level a typical example for an ACL is the management
of file permissions on unix based operating systems.

Since ACLs don’t scale well on a large base it is common to model access control based on roles
(RBAC).

Category: Security

Accountability Quality Attribute

Degree to which the actions of an entity can be traced uniquely to the entity. Is a sub-character-
istic of: security. Refer to ISO 25010⁶ website.

Category: Quality, ISO 25010
⁵http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
⁶http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Glossary of Terms 6

Accreditation

Determination procedure and certification by an authorised accreditation body (here the iSAQB(R))
confirming that the applicant meets the organizational, technical and qualitative requirements
as a training provider.

Accreditation Body

The application for accreditation must be submitted through the accreditation body designated
by the iSAQB. The accreditation body is the contact point for all questions of the training
provider during the accreditation. It coordinates the accreditation procedure, carries out the
formal assessment of the documents submitted and organises the technical assessment in the
AUDIT WORKING GROUP.

Accredited Training Provider

Training Provider with valid accreditation issued by the iSAQB(R).

Acyclic Dependencies Principle

A fundamental principle for designing the structure of software systems (also see Package
Principles). It demands that there be no cycles in the dependence graph of a system, which is
also a necessity⁷ for hierarchical decomposition⁸.

Avoiding dependence cycles is essential for low coupling and maintainability, as all components
in a dependence cycle effectively (even if indirectly) depend on each other, which makes it hard
to understand, change or replace any part of the cycle in isolation (also see Lilienthal-2019).

Although Robert C. Martin (Martin-2003) expressed it in terms of large components of object-
oriented software, the ADP is a universal principle. It goes back (at least) to one of the origins
of software architecture, the classic 1972 paper “On the Criteria To Be Used in Decomposing
Systems into Modules” (Parnas-1972), which concludes that hierarchical structure along with
“clean” decomposition are desirable properties of any system.

It can be argued that a dependence cycle, even before considering its various practical problems,
is logically already as flawed as a circular argument⁹ or circular definition¹⁰. As a structural
contradiction, a cycle can neither be an appropriate nor meaningful model of the inherent
nature and purpose of a system. And this conceptual divergence alone virtually guarantees for
(unpredictable) problems to arise, which is exactly what a principled approach guards against.

Category: Design-Principle

⁷https://en.wikipedia.org/wiki/Directed_acyclic_graph
⁸https://en.wikipedia.org/wiki/Functional_decomposition
⁹https://en.wikipedia.org/wiki/Circular_reasoning
¹⁰https://en.wikipedia.org/wiki/Fallacies_of_definition#Circularity

https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Functional_decomposition
https://en.wikipedia.org/wiki/Circular_reasoning
https://en.wikipedia.org/wiki/Fallacies_of_definition#Circularity
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Functional_decomposition
https://en.wikipedia.org/wiki/Circular_reasoning
https://en.wikipedia.org/wiki/Fallacies_of_definition#Circularity

Glossary of Terms 7

Adaptability Quality Attribute

Degree to which a product or system can effectively and efficiently be adapted for different or
evolving hardware, software or other operational or usage environments. Is a sub-characteristic
of: portability. Refer to ISO 25010¹¹ website.

Category: Quality, ISO 25010

Adapter

The adapter is a design pattern that allows the interface of an existing component to be used from
another interface. It is often used to make existing components cooperate with others without
modifying their source code.

Category: Design-Pattern, Foundation.

Aggregate

Aggregate is a building block of Domain-Driven Design. Aggregates are complex object struc-
tures that are made of entities and value objects. Each aggregate has a root entity and is regarded
as one unit when it comes to changes. An aggregate ensure consistency and integrity of its
contained entities with invariants.

Category: DDD

Aggregation

A form of object composition in object-oriented programming. It differs from composition, as
aggregation does not imply ownership. When the element is destroyed, the contained elements
remain intact.

Category: Foundation

Analysability Quality Attribute

Degree of effectiveness and efficiency with which it is possible to assess the impact on a product
or system of an intended change to one or more of its parts, or to diagnose a product for
deficiencies or causes of failures, or to identify parts to be modified. Is a sub-characteristic of:
maintainability. Refer to ISO 25010¹² website.

Category: Quality, ISO 25010

Appropriateness

(syn: adequacy) Suitability for a particular purpose.

¹¹http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
¹²http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Glossary of Terms 8

Appropriateness Recognizability Quality Attribute

Degree to which users can recognize whether a product or system is appropriate for their needs.
Is a sub-characteristic of: usability. Refer to ISO 25010¹³ website.

Category: Quality, ISO 25010

arc42

Free template for communication and documentation of software architectures. arc42 consists
of 12 (optional) parts or sections. See https://arc42.org for details.

Category: Communication, Documentation

Architecture

See Software Architecture

Category: ISO-IEC-IEEE-42010

Architectural Decision

Decision, which has an sustainable or essential effect on the architecture.

Example: Decision about database technology or technical basics of the user interface.

Following ISO/IEC/IEEE 42010 an architectural decision pertain to system concerns. However,
there is often no simple mapping between the two. A decision can affect the architecture in
several ways. These can be reflected in the architecture description (as defined in ISO/IEC/IEEE
42010).

Category: ISO-IEC-IEEE-42010

Architecture Description

Work product used to express an architecture (as defined in ISO/IEC/IEEE 42010).

Category: ISO-IEC-IEEE-42010

Architecture Description Element

An architecture description element is any construct in an architecture description. architecture
description elements are the most primitive constructs discussed in ISO/IEC/IEEE 42010. All
terms defined in ISO/IEC/IEEE 42010 are a specialization of the concept of an architecture
description element (as defined in ISO/IEC/IEEE 42010).

Category: ISO-IEC-IEEE-42010

¹³http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://arc42.org
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Glossary of Terms 9

Architecture Description Language

An architecture description language (ADL) is any form of expression for use in architecture
descriptions (as defined in ISO/IEC/IEEE 42010).

Examples are Rapide, Wright, SysML, ArchiMate and the viewpoint languages of RM-ODP [ISO
10746].

Category: ISO-IEC-IEEE-42010

Architecture Evaluation

Quantitative or qualitative assessment of a (software or system) architecture. Determine if an
architecture can achieve its target qualities or quality attributes

See Assessment

Comment (Gernot Starke)
In my opinion the terms architecture analysis or architecture assessment are more
appropriate, as evaluation contains value, implying numerical assessment or metrics,
which is usually only part of what you should do in architecture analysis.

Architecture Framework

Conventions, principles and practices for the description of architectures established within a
specific domain of application and/or community of stakeholders (as defined in ISO/IEC/IEEE
42010).

Examples are:

• Generalised Enterprise Reference Architecture and Methodologies (GERAM) [ISO 15704]
is an architecture framework.

• Reference Model of Open Distributed Processing (RM-ODP) [ISO/IEC 10746] is an archi-
tecture framework.

Category: ISO-IEC-IEEE-42010

Architecture Goal

(syn: Architectural quality goal, Architectural quality requirement): A quality attribute that the
system needs to achieve and the quality attribute is understood to be an architectural issue.

Hence, the architecture needs to be designed in a way to fulfill this architectural goal. These
goals often have long term character in contrast to (short term) project goals.

Category: Foundation

Glossary of Terms 10

Architecture Model

An architecture view is composed of one or more architecture models. An architecture model
uses modelling conventions appropriate to the concerns to be addressed. These conventions
are specified by the model kind governing that model. Within an architecture description, an
architecture model can be a part of more than one architecture view (as defined in ISO/IEC/IEEE
42010).

Category: ISO-IEC-IEEE-42010

Architecture Objective

See architecture goal.

Architectural (Architecture) Pattern

“An architectural pattern expresses a fundamental structural organization schema for software
systems. It provides a set of predefined sub-systems, specifies their responsibilities, and includes
rules and guidelines for organizing the relationships between them” (Buschmann+1996, page 12).
Similar to architecture style.

Examples include:

• Layers
• Pipes-and-Filter
• Microservices
• CQRS

Architecture Quality Requirement

See architecture goal.

Architecture Rationale

Architecture rationale records explanation, justification or reasoning about architecture deci-
sions that have been made. The rationale for a decision can include the basis for a decision,
alternatives and trade-offs considered, potential consequences of the decision and citations to
sources of additional information (as defined in ISO/IEC/IEEE 42010).

Category: ISO-IEC-IEEE-42010

Glossary of Terms 11

Architecture Style

Description of element and relation types, together with constraints on how they can be used.
Often called architecture pattern. Examples: Pipes-and-Filter, Model-View-Controller, Layers.

Comment (Alexander Lorz)
Depending on who you ask, some might consider architecture styles a generalization of
architecture patterns. That is, “distributed system” is a style while “client-server, CQRS,
broker and peer-to-peer” are more specific patterns that belong to this style. However,
from a practical point of view this distinction is not essential.

Architectural Tactic

A technique, strategy, approach or decision helping to achieve one or several quality require-
ments. The term was coined by Bass+2012.

Category: Foundation

Architecture View

A representation of a system from a specific perspective. Important and well-known views are:

• Context view,
• Building block view
• Runtime view
• Deployment view

[Bass+2012] and [Rozanski+11] extensively discuss this concept.

Following ISO/IEC/IEEE 42010, an architecture view is a work product expressing the architec-
ture of a system from the perspective of specific system concerns (as defined in ISO/IEC/IEEE
42010).

Category: ISO-IEC-IEEE-42010

Architecture Viewpoint

Work product establishing the conventions for the construction, interpretation and use of archi-
tecture views to frame specific system concerns (as defined in ISO/IEC/IEEE 42010).

Category: ISO-IEC-IEEE-42010

Artifact

Tangible by-product created or generated during development of software. Examples of artifacts
are use cases, all kinds of diagrams, UML models, requirements and design documents, source
code, test cases, class-files, archives.

Glossary of Terms 12

Asset

“In information security, computer security and network security an Asset is any data, device,
or other component of the environment that supports information-related activities. Assets
generally include hardware (e.g. servers and switches), software (e.g. mission critical applications
and support systems) and confidential information”

(quoted from Wikipedia¹⁴)

Category: Security

Assessment

See also Evaluation.

Gathering information about status, risks or vulnerabilities of a system. Assessment might
concerning potentially all aspects (development, organization, architecture, code etc.)

Association

Defines a relationship between objects (in general: between components). Each association can
be described in detail by cardinalities and (role-)names.

See coupling, dependency and relationship

Category: Foundation

Asymmetric Cryptography

Asymmetric cryptography algorithms are designed that the key which is used for encryption
is different from the key used for decryption. The key for encryption is called “public-key” the
key for decryption is called “private-key”. The public key can be published and used by anyone
to encrypt information only readable by the party owning the private-key for decryption. See
Schneier, Public-Key Algorithms, page 17.

Asymmetric cryptography is fundamental for PKI and digital signatures.

Category: Security

ATAM

Architecture Tradeoff Analysis Method. Qualitative architecture evaluation method, based upon
a (hierarchical) quality tree and concrete quality scenarios. Basic idea: Compare fine-grained
quality scenarios (“quality-requirements”) with the corresponding architectural approaches to
identify risks and trade-offs.

¹⁴https://en.wikipedia.org/w/index.php?title=Asset_(computer_security)&oldid=694606042

https://en.wikipedia.org/w/index.php?title=Asset_(computer_security)&oldid=694606042
https://en.wikipedia.org/w/index.php?title=Asset_(computer_security)&oldid=694606042

Glossary of Terms 13

Attack Tree

Formal way to describe different approaches of an attacker to reach certain goals. The tree is
usally structured with the attack goal on top and different approaches as child nodes. Each
approach is likely to have dependencies which are again listed as child nodes. The possibiliy of
a certain way to attack an IT-system can be analyzed by assigning additional attributes to each
node. Examples could be the estimated costs of an attack or if an attack approach is possible or
not by referencing countermeasures.

See Bruce Schneier on “Modeling security threats”¹⁵.

Category: Security

Audit Working Group:

The audit working group is responsible for the technical evaluation of training materials as well
as for the monitoring and evaluation of training courses. The members of the audit working
group, authorized by the iSAQB(R), are independent of the training provider. The result of the
assessments (the respective accreditation recommendation of the AUDIT WORKING GROUP)
will be communicated to the training provider by the accreditation body.

Authentication

Authentication is the process of confirming the claim of an identity by a given entity. Usually
this is done by verifying at least one of the authentication factors which is known by the system:

• knowledge (e.g. password)
• ownership (e.g. security token)
• inherence (e.g. biometrics)

For a stronger authentication multiple factors can be requested or at least factors of two cate-
gories.

Category: Security

Authenticity Quality Attribute

Degree to which the identity of a subject or resource can be proved to be the one claimed. Is a
sub-characteristic of: security. Refer to ISO 25010¹⁶ website.

Category: Quality, ISO 25010

¹⁵https://www.schneier.com/academic/archives/1999/12/attack_trees.html
¹⁶http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

https://www.schneier.com/academic/archives/1999/12/attack_trees.html
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Glossary of Terms 14

Authorization

“Authorization or authorisation is the function of specifying access rights to resources related to
information security and computer security in general and to access control in particular. More
formally, “to authorize” is to define an access policy.”

(quoted from Wikipedia¹⁷)

Category: Security

Availability

One of the basic Security Goals describing a system that can provide desired information
when its needed. From a security perspective for example denial-of-service-attacks may prevent
availability.

Category: Security

Availability Quality Attribute

Degree to which a system, product or component is operational and accessible when required
for use. Is a sub-characteristic of: reliability. Refer to ISO 25010¹⁸ website.

Category: Quality, ISO 25010, Security

Black Box

View on a building block (or component) that hides the internal structure. Blackboxes respect the
information hiding principle. They shall have clearly defined input- and output interfaces plus
a precisely formulated responsibility or objective. Optionally a blackbox defines some quality
attributes, for example timing behavior, throughput or security aspects.

Category: Foundation

Bottom-Up Approach

Direction of work (or strategy of processing) for modeling and design. Starting with something
detailed or concrete, working towards something more general or abstract.

“In a bottom-up approach the individual base elements of the system are first specified in
great detail. These elements are then linked together to form larger subsystems.” (quote from
Wikipedia¹⁹)

¹⁷https://en.wikipedia.org/w/index.php?title=Authorization&oldid=739777234
¹⁸http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
¹⁹https://en.wikipedia.org/wiki/Top-down_and_bottom-up_design

https://en.wikipedia.org/w/index.php?title=Authorization&oldid=739777234
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://en.wikipedia.org/wiki/Top-down_and_bottom-up_design
https://en.wikipedia.org/w/index.php?title=Authorization&oldid=739777234
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://en.wikipedia.org/wiki/Top-down_and_bottom-up_design

Glossary of Terms 15

Bounded Context

Bounded Context is principle of the strategy design of Domain-Driven Design. “A bounded
context explicitly defines the context within which a domainmodel for a software system applies.
Ideally, it would be preferable to have a single, unified model for all software systems in the
same domain. While this is a noble goal, in reality it typically fragments into multiple models. It
is useful to recognize this fact of life and work with it.” (quote from Wikipedia)

“Multiple domainmodels are in play on any large project. Yet when code based on distinct models
is combined, software becomes buggy, unreliable, and difficult to understand. Communication
among team members becomes confusing. It is often unclear in what context a model should
not be applied. Therefore: Explicitly set boundaries in terms of team organization, usage within
specific parts of the application, and physical manifestations such as code bases and database
schemas. Keep the model strictly consistent within these bounds, but don’t be distracted or
confused by issues outside.” (quote from Wikipedia)

Category: DDD

Bridge

Design pattern in which an abstraction is decoupled from its implementation, so that the two
can vary independently. In case you find that incomprehensible (as most people) - have a look
here²⁰

Category: Design-Pattern

Broker

An architecture pattern used to structure distributed software systems with decoupled compo-
nents that interact by (usually remote) service invocations.

A broker is responsible for coordinating communication, such as forwarding requests, as well as
for transmitting results and exceptions.

Category: Architecture-Pattern

Building Block

General or abstract term for all kinds of artifacts from which software is constructed. Part of the
statical structure (Building Block View) of software architecture.

Building blocks can be hierarchically structured - they may contain other (smaller) building
blocks.

Some examples of alternative (concrete) names for building blocks: Component, module, package,
namespace, class, file, program, subsystem, function, configuration, data-definition.

²⁰http://www.cs.sjsu.edu/~pearce/modules/patterns/platform/bridge/index.htm

http://www.cs.sjsu.edu/~pearce/modules/patterns/platform/bridge/index.htm
http://www.cs.sjsu.edu/~pearce/modules/patterns/platform/bridge/index.htm

Glossary of Terms 16

Building Block View

Shows the statical structure of the system, how its source code is organized. Usually a hierarchical
manner, starting from the context view. Complemented by one or several runtime scenarios.

Business Architecture

A blueprint of the enterprise that provides a common understanding of the organization and is
used to align strategic objectives and tactical demands.

C4 Model

The C4 Model for Software Architecture Documentation²¹ was developed by Simon Brown. It
consists of a hierarchical set of software architecture diagrams for context, containers, compo-
nents, and code. The hierarchy of the C4 diagrams provides different levels of abstraction, each
of which is relevant to a different audience.

CA

A Certificate Authority issues digital certificates to a given subject in a PKI. Usually there is a
trust established to this authority which results in the same trust level to the issued certificates.

An example is the widely used TLS-PKI where every browser includes the root-certificates of
a defined list of CAs. These CAs then check the identity of a given internet domain owner and
digitally sign his certificate for the use with TLS.

Category: Security

Capacity Quality Attribute

Degree to which the maximum limits of a product or system parameter meet requirements. Is a
sub-characteristic of: performance efficiency. Refer to ISO 25010²² website.

Category: Quality, ISO 25010

Cardinality

Describes the quantitative rating of an association or relationship. It specifies the number of
participants (objects, instances, modules etc) of the association.

Certification Program

The iSAQB(R) CPSA(R) certification program, including its organizational components, docu-
ments (training documents, contracts) and processes.

The copyrighted abbreviation and term CPSA(R) means Certified Professional for Software
Architecture.

²¹https://c4model.com/
²²http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

https://c4model.com/
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://c4model.com/
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Glossary of Terms 17

CIA Triad

See Security Goals

Category: Security

Cloud

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to
a shared pool of configurable computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with minimal management effort or
service provider interaction.”

Definition quoted from NIST²³ (National Institute of Standards and Technology).

The NIST definition contains the following five characteristics (quoted but abbreviated from the
aforementioned NIST source too):

• On-demand self service: A consumer can unilaterally provision computing
capabilities, such as server time and network storage,
without requiring human interaction with each service provider.

• Broad network access: Capabilities are available over the network and accessed through
standard mechanisms that promote use by heterogeneous client platforms.

• Resource pooling: The provider’s computing resources are pooled to serve
multiple consumers using a multi-tenant model, with different physical and
virtual resources dynamically assigned and reassigned according to consumer demand.
There is location independence in that the customer generally has no control or knowledge
over the exact location of the provided resources but may be able to specify location at a
higher level of abstraction (e.g., country, state, or datacenter).
Examples of resources include storage, processing, memory, and network bandwidth.

• Rapid elasticity: Capabilities can be elastically provisioned and released, in some cases au-
tomatically, to scale rapidly commensurate with demand. To the consumer, the capabilities
available for provisioning often appear to be unlimited and can be appropriated in any
quantity at any time.

• Measured service: Cloud systems automatically control and optimize resource use by
leveraging a metering capability at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user accounts). Resource usage can
be monitored, controlled, and reported, providing transparency for both the provider and
consumer of the utilized service.

Co-Existence Quality Attribute

Degree to which a product can perform its required functions efficiently while sharing a common
environment and resources with other products, without detrimental impact on any other
product. Is a sub-characteristic of: compatibility. Refer to ISO 25010²⁴ website.

Category: Quality, ISO 25010

²³http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
²⁴http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Glossary of Terms 18

Cohesion

The degree to which elements of a building block, component or module belong together is called
cohesion²⁵. It measures the strength of relationship between pieces of functionality within a given
component. In cohesive systems, functionality is strongly related. It is usually characterized as
high cohesion or low cohesion. Strive for high cohesion, because high cohesion often implies
reusability, low coupling and understandability.

Command

Design pattern in which an object is used to encapsulate an action. This action might be invoked
or executed at a later time.

Common Closure Principle

A fundamental principle for designing the structure of software systems (also see Package Princi-
ples). It directly and explicitly restates the Single Responsibility Principle for larger components.

The subcomponents of a component should ideally have the exact same reasons to change. A
change request that effects one of them should effect all of them, but it should not effect anything
else outside their enclosing component.

Thereby, each expected change request would effect a minimal number of components. Or put
another way: Each component would be closed to a maximum number of expected change
requests. The term expected here signifies a few important implications:

1. The inherent concepts/responsibilities of a system run deeper than a surface-level descrip-
tion of its behaviour.

2. The deeper concepts/responsibilities of a system are not entirely objective but can be
modeled in different ways.

3. Determining the concepts/responsibilities of a system is not just passive describing but also
active strategizing.

This principle leads to highly cohesive components. It also implies loosely coupled components
because related concepts that do change together do get bundled up in the same component.
When each single concept is expressed by a single component, there are no unnecessary couplings
between components.

Category: Design-Principle

Common Reuse Principle

A fundamental principle for designing the structure of software systems (also see Package
Principles). The subcomponents (classes) of a component should be exactly the ones that are
being (re)used together. Or the other way around: Components that are being (re)used together

²⁵https://en.wikipedia.org/wiki/Cohesion_%28computer_science%29

https://en.wikipedia.org/wiki/Cohesion_(computer_science)
https://en.wikipedia.org/wiki/Cohesion_(computer_science)

Glossary of Terms 19

should be packaged into a larger component. This also implies that subcomponents that are not
frequently used in conjunction with the other subcomponents should not be in the respective
component.

This perspective helps in deciding what belongs into a component and what doesn’t. It aims at
a system decomposition of loosely coupled and highly cohesive components.

This obviously echoes the Single Responsibility Principle. It also echoes the Interface Segregation
Principle, as it ensures that clients aren’t forced to depend on concepts they don’t care about.

Category: Design-Principle

Compatibility Quality Attribute

Degree to which a product, system or component can exchange information with other products,
systems or components, and/or perform its required functions, while sharing the same hardware
or software environment. Is composed of the following sub-characteristics: co-existence, inter-
operabilty. Refer to ISO 25010²⁶ website.

Category: Quality, ISO 25010

Complexity

“Complexity is generally used to characterize something with many parts where those parts
interact with each other in multiple ways.” (quoted from Wikipedia.)

• Essential complexity is the core of the problem we have to solve, and it consists of the parts
of the software that are legitimately difficult problems. Most software problems contain
some complexity.

• Accidental complexity is all the stuff that doesn’t necessarily relate directly to the solution,
but that we have to deal with anyway.

(quoted from Mark Needham²⁷)

Architects shall strive to reduce accidental complexity.

Component

See Building block. Structural element of an architecture.

Composition

Combine simpler elements (e.g. functions, data types, building blocks) to build more complicated,
powerful or more responsible ones.

In UML: When the owning element is destroyed, so are the contained elements.

²⁶http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
²⁷http://codebetter.com/markneedham/2010/03/18/essential-and-accidental-complexity/

http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://codebetter.com/markneedham/2010/03/18/essential-and-accidental-complexity/
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://codebetter.com/markneedham/2010/03/18/essential-and-accidental-complexity/

Glossary of Terms 20

Concept

Plan, principle(s) or rule(s) how to solve a specific problem.

Concepts are often cross-cutting in a sense that multiple architectural elements might be affected
by a single concept. That means that implementors of e.g. implementation units (building blocks)
should adhere to the corresponding concept.

Concepts form the basis for conceptual integrity.

Conceptual Integrity

Concepts, rules, patterns and similar solution approaches are applied in a consistent (homoge-
neous, similar) way throughout the system. Similar problems are solved in similar or identical
ways.

Concern

“A concern about an architecture is a requirement, an objective, a constraint, an intention, or an
aspiration a stakeholder has for that architecture.” (quoted from [Rozanski+11], chapter 8)

Following ISO/IEC/IEEE 42010 a concern is defined as (system) interest in a system relevant to
one or more of its stakeholders (as defined in ISO/IEC/IEEE 42010).

Note, a concern pertains to any influence on a system in its environment, including develop-
mental, technological, business, operational, organizational, political, economic, legal, regulatory,
ecological and social influences.

Category: ISO-IEC-IEEE-42010

Confidentiality

One of the basic Security Goals describing a system to disclose and make information only
available to authorized parties.

Category: Security

Confidentiality Quality Attribute

Degree to which a product or system ensures that data are accessible only to those authorized
to have access. Is a sub-characteristic of: security. Refer to ISO 25010²⁸ website.

Category: Quality, ISO 25010

²⁸http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Glossary of Terms 21

Consistency

A consistent systems does not contain contradictions.

• Identical problems are solved with identical (or at least similar) approaches.
• Degree, to which data and their relations comply to validation rules.
• Clients (of a database) get identical results for identical queries (e.g. Monotonic-Read-
Consistency, Montonic-Write-Consistency, Read-Your-Writes-Consistency etc.)

• With respect to behavior: Degree, to which a system behaves coherent, replicable and
reasonable.

Constraint

A restriction on the degree of freedom you have in creating, designing, implementing or other-
wise providing a solution. Constraints are often global requirements, such as limited development
resources or a decision by senior management that restricts the way you plan, design, develop
or operate a system.

Based upon a definition from Scott Ambler²⁹

Context (of a System)

“Defines the relationships, dependencies, and interactions between the system and its environ-
ment: People, systems, and external entities with which it interacts.” (quoted from Rozanski-
Woods³⁰)

Another definition from arc42: “System scope and context - as the name suggests - delimits
your system (i.e. your scope) from all its communication partners (neighboring systems and
users, i.e. the context of your system). It thereby specifies the external interfaces.” (quoted from
docs.arc42.org³¹)

Distinguish between business and technical context:

• The business context (formerly called logical context) shows the external relationships
from a business- or non-technical perspective. It abstracts from technical, hardware or
implementation details. Input-/Output relationships are named by their business meaning
instead of their technical properties.

• The technical context shows technical details, like transmission channel, technical proto-
coll, IP-address, bus or similar hardware details. Embedded systems, for example, often care
for hardware-related information very early in development.

²⁹http://agilemodeling.com/artifacts/constraint.htm
³⁰https://www.viewpoints-and-perspectives.info/home/viewpoints/context/
³¹https://docs.arc42.org

http://agilemodeling.com/artifacts/constraint.htm
https://www.viewpoints-and-perspectives.info/home/viewpoints/context/
https://www.viewpoints-and-perspectives.info/home/viewpoints/context/
https://docs.arc42.org/
http://agilemodeling.com/artifacts/constraint.htm
https://www.viewpoints-and-perspectives.info/home/viewpoints/context/
https://docs.arc42.org/

Glossary of Terms 22

Context View

Shows the complete system as one blackbox within its environment, either from a business per-
spective (business context) or from a technical or deployment perspective (technical context). The
context view (or context diagram) shows the boundary between a system and its environment,
showing the entities in its environment (its neighbors) with which it interacts.

Neighbors can either be other software, hardware (like sensors), humans, user-roles or even
organizations using the system.

See Context.

Correspondence

A correspondence defines a relation between architectural description elements. Correspon-
dences are used to express architecture relations of interest within an architecture description
(or between architecture descriptions) (as defined in ISO/IEC/IEEE 42010).

Category: ISO-IEC-IEEE-42010

Correspondence Rule

Correspondences can be governed by correspondence rules. Correspondence rules are used to
enforce relations within an architecture description (or between architecture descriptions) (as
defined in ISO/IEC/IEEE 42010).

Category: ISO-IEC-IEEE-42010

Synonym: Integrity, homogeneity, conceptual integrity.

Coupling

Coupling³² is the kind and degree of interdependence between building blocks of software; a
measure of how closely connected two components are. You should always aim for low coupling.
Coupling is usually contrasted with cohesion. Low coupling often correlates with high cohesion,
and vice versa. Low coupling is often a sign of a well-structured system. When combined with
high cohesion, it supports understandability and maintainability.

CPSA(R)

Certified Professional for Software Architecture(R) – the common name for different levels of
certification issued by the iSAQB. The most common known certifications are the foundation
level (CPSA-F) and the advanced level (CPSA-A).

³²https://en.wikipedia.org/wiki/Coupling_%28computer_programming%29

https://en.wikipedia.org/wiki/Coupling_(computer_programming)
https://en.wikipedia.org/wiki/Coupling_(computer_programming)

Glossary of Terms 23

CQRS

(command query responsibility segregation): Separate the elements manipulating (command)
data from those just reading (query). This separation enables different optimization strategies
for reading and writing data (for example, it’s much easier to cache data that’s read-only than
to cache data that’s also altered.)

There’s an interesting eBook by Mark Nijhof³³ on this subject.

Cross-Cutting Concept

See concept.

Synonym: principle, rule.

Cross-Cutting Concern

Functionality of the architecture or system that affects several elements. Examples of such
concerns are logging, transactions, security, exception handling, caching etc.

Often these concerns will be addressed in systems via concepts.

Curriculum

The learning process provided by a school (here: iSAQB as the institution governing software
architecture education). It includes the content of courses (the syllabus), the methods employed,
and other aspects, like norms and values, which relate to the way the education including
certification and examination is organized.

Cyclomatic Complexity

Quantitative measure, number of independent paths through a program’s source code. It roughly
correlates to the number of conditional statements (if, while) in the code +1. A linear sequence
of statements without if or while has the cyclomatic complexity of 1. Many software engineers
believe that higher complexity correlates to the number of defects.

Category: Metric.

Decomposition

(syn: factoring) Breaking or dividing a complex system or problem into several smaller parts that
are easier to understand, implement or maintain.

Dependency

See coupling.

³³https://leanpub.com/cqrs

https://leanpub.com/cqrs
https://leanpub.com/cqrs

Glossary of Terms 24

Dependency Injection (DI)

Instead of having your objects or a factory creating a dependency, you pass the needed depen-
dencies to the constructor or via property setters. You therefore make the creation of specific
dependencies somebody else’s problem.

Dependency Inversion Principle

High level (abstract) elements should not depend upon low level (specific) elements. “Details
should depend upon abstractions” (Martin-2003). One of the SOLID principles, nicely explained
by Brett Schuchert³⁴, and closely related to the SDP and SAP.

Deployment

Bring software onto its execution environment (hardware, processor etc). Put software into
operation.

Deployment View

Architectural view showing the technical infrastructure where a system or artifacts will be
deployed and executed.

“This view defines the physical environment in which the system is intended to run, including
the hardware environment your system needs (e.g., processing nodes, network interconnections,
and disk storage facilities), the technical environment requirements for each node (or node type)
in the system, and the mapping of your software elements to the runtime environment that will
execute them.” (as defined by Rozanski+2011³⁵)

Design Pattern

General or generic reusable solution to a commonly occurring problem within a given context
in design. Initially conceived by the famous architect Christopher Alexander³⁶, the concept of
design patterns was taken up by software engineers.

In our opinion, every serious software developer should know at least some patterns from the
pioneering Gang-of-Four³⁷ book by Erich Gamma (Gamma+1994) and his three allies.

Design Principle

Set of guidelines that helps software developers to design and implement better solutions, where
“better” could, for example, mean one or more of the following:

³⁴http://martinfowler.com/articles/dipInTheWild.html
³⁵http://www.viewpoints-and-perspectives.info/home/viewpoints/deployment/
³⁶https://en.wikipedia.org/wiki/Christopher_Alexander
³⁷https://en.wikipedia.org/wiki/Design_Patterns

http://martinfowler.com/articles/dipInTheWild.html
http://www.viewpoints-and-perspectives.info/home/viewpoints/deployment/
https://en.wikipedia.org/wiki/Christopher_Alexander
https://en.wikipedia.org/wiki/Design_Patterns
http://martinfowler.com/articles/dipInTheWild.html
http://www.viewpoints-and-perspectives.info/home/viewpoints/deployment/
https://en.wikipedia.org/wiki/Christopher_Alexander
https://en.wikipedia.org/wiki/Design_Patterns

Glossary of Terms 25

• low coupling.
• high cohesion.
• separation of concerns or adherence to the Single Responsibility Principle.
• adherence to the Information Hiding principle.
• avoid Rigidity: A system or element is difficult to change because every change potentially
affects many other elements.

• avoid Fragility: When elements are changed, unexpected results, defects or otherwise
negative consequences occur at other elements.

• avoid Immobility: An element is difficult to reuse because it cannot be disentagled from the
rest of the system.

Design Rationale

An explicit documentation of the reasons behind decisions made when designing any architec-
tural element.

Document

A (usually written) artifact conveying information.

Documentation

A systematically ordered collection of documents and other material of any kind that makes
usage or evaluation easier. Examples for “other material”: presentation, video, audio, web page,
image, etc.

Documentation Build

Automatic build process that collects artifacts into a consistent documentation.

Domain-Driven Design (DDD)

“Domain-driven design (DDD) is an approach to developing software for complex needs by
deeply connecting the implementation to an evolving model of the core business concepts.”
(quoted from DDDCommunity³⁸). See Evans-2004.

See also:

• Entity
• Value Object
• Aggregate
• Service
• Factory
• Repository
• Ubiquitous Language
³⁸http://dddcommunity.org/learning-ddd/what_is_ddd/

http://dddcommunity.org/learning-ddd/what_is_ddd/
http://dddcommunity.org/learning-ddd/what_is_ddd/

Glossary of Terms 26

Domain Model

The domain model is a concept of Domain-Driven Design. I provides a system of abstractions
that describes selected aspects of a domain and can be used to solve problems related to that
domain.

Drawing Tool

A tool to create drawings that can be used in architecture documentation. Example: Visio,
OmniGraffle, PowerPoint, etc. Drawing tools treat each drawing as a separate thing, this causes
maintenance overhead when updating an element of the architecture that is shown in several
diagrams (as opposed to a Modeling Tool).

Economicalness

Being economical, simple, lean or achievable with relatively low effort.

Embedded System

System embedded within a larger mechanical or electrical system. Embedded systems often
have real-time computing constraints. Typical properties of embedded systems are low power
consumption, limited memory and processing resources, small size.

Encapsulation

Encapsulation has two slightly distinct notions, and sometimes to the combination thereof:

• restricting access to some of the object’s components
• bundling of data with the methods or functions operating on that data

Encapsulation is a mechanism for information hiding.

Enterprise IT Architecture

Synonym: Enterprise Architecture.

Structures and concepts for the IT support of an entire company. Atomic subject matters of the
enterprise architecture are single software systems also referred to as “applications”.

Entity

Category: DDD

Entity is a building block of Domain-Driven Design. An entity is a core object of a business
domain with unchangeable identity and a clearly defined lifecycle. Entities map their state to
value objects and are almost always persistent.

Glossary of Terms 27

Entropy

In information theory defined as “amount of information” a message has or “unpredictability
of information content”. The entropy of a cryptosystem is measured by the size of the keyspace.
Larger keyspaces have an increased entropy and if not flawed by the algorithm itself, harder to
break than smaller ones. For secure cryptographic operations it is mandatory to not only use
random values as input, they should have also a high entropy. The creation of high entropy on
a computer system is non-trivial and can affect the performance of a system.

See 11.1 Information Theory of Schneier-1996 and Whitewood Inc. on “Understanding and
Managing Entropy”³⁹ or SANS “Randomness and Entropy - An Introduction”⁴⁰.

Category: Security

Environment

(System) Context determining the setting and circumstances of all influences upon a system (as
defined in ISO/IEC/IEEE 42010).

Note, the environment of a system includes developmental, technological, business, operational,
organizational, political, economic, legal, regulatory, ecological and social influences.

Category: ISO-IEC-IEEE-42010

Facade

Structural design pattern. A Facade offers a simplified interface to a complex or complicated
building block (the provider) without any modifications to the provider.

Factory

(Design pattern) In class-based or object-oriented programming, the factory method pattern is a
creational design pattern that uses factory methods or factory components for creating objects,
without having to specify the exact class of the object that will be created.

In Domain-Driven Design: A factory encapsulates the creation of aggregates, entities, and value
objects. Factories work exclusively in the domain and have no access to technical building blocks
(e.g. a database).

Fault Tolerance Quality Attribute

Degree to which a system, product or component operates as intended despite the presence of
hardware or software faults. Is a sub-characteristic of: reliability. Refer to ISO 25010⁴¹ website.

Category: Quality, ISO 25010

³⁹https://www.blackhat.com/docs/us-15/materials/us-15-Potter-Understanding-And-Managing-Entropy-Usage-wp.pdf
⁴⁰https://www.sans.org/reading-room/whitepapers/vpns/randomness-entropy-introduction-874
⁴¹http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

https://www.blackhat.com/docs/us-15/materials/us-15-Potter-Understanding-And-Managing-Entropy-Usage-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Potter-Understanding-And-Managing-Entropy-Usage-wp.pdf
https://www.sans.org/reading-room/whitepapers/vpns/randomness-entropy-introduction-874
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://www.blackhat.com/docs/us-15/materials/us-15-Potter-Understanding-And-Managing-Entropy-Usage-wp.pdf
https://www.sans.org/reading-room/whitepapers/vpns/randomness-entropy-introduction-874
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Glossary of Terms 28

Filter

Part of the pipe-and-filter architectural style that creates or transforms data. Filters are typically
executed independently from other filters.

Fitness Function

“An architectural fitness function provides an objective integrity assessment of some architec-
tural characteristics.” (Ford+2017).

A fitness function is derived from manual evaluations and automated tests and shows to which
extent architectural or quality requirements are met.

Function Signature

(Synonym: type or method signature) defines input and output of functions or methods.

A signature can include:

• parameters and their types
• return value and type
• exception thrown or errors raised

Functional Appropriateness Quality Attribute

Degree to which the functions facilitate the accomplishment of specified tasks and objectives. Is
a sub-characteristic of: functional suitability. Refer to ISO 25010⁴² website.

Category: Quality, ISO 25010

Functional Completeness Quality Attribute

Degree to which the set of functions covers all the specified tasks and user objectives. Is a sub-
characteristic of: functional suitability. Refer to ISO 25010⁴³ website.

Category: Quality, ISO 25010

Functional Correctness Quality Attribute

Degree to which a product or system provides the correct results with the needed degree of
precision. Is a sub-characteristic of: functional suitability. Refer to ISO 25010⁴⁴ website.

Category: Quality, ISO 25010

⁴²http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
⁴³http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
⁴⁴http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Glossary of Terms 29

Functional Suitability Quality Attribute

Degree to which a product or system provides functions that meet stated and implied needs when
used under specified conditions. Is composed of the following sub-characteristics: functional
completeness, functional correctness, functional appropriateness. Refer to ISO 25010⁴⁵ website.

Category: Quality, ISO 25010

Fundamental Modeling Concepts (FMC)

Fundamental Modeling Concepts⁴⁶ is a graphical notation for modeling and documenting soft-
ware systems. From their website: “FMC provide a framework for the comprehensive description
of software-intensive systems. It is based on a precise terminology and supported by a graphical
notation which can be easily understood”.

Gateway

A (design or architecture) pattern: An element of that encapsulates access to a (usually external)
system or resource. See also wrapper, adapter.

Global Analysis

Systematic approach to achieve desired quality attributes. Developed and documented by Chris-
tine Hofmeister (Siemens Corporate Research). Global analysis is described in [Hofmeister+2000].

Heterogeneous Architectural Style

see hybrid architecture style.

Heuristic

Informal rule, rule-of-thumb. Any way of problem solving not guaranteed to be optimal, but
somehow sufficient. Examples from Object-Oriented Design⁴⁷ or User Interface Design⁴⁸.

Hybrid Architecture Style

Combination of two or more existing architecture styles or patterns. For example, an MVC
construct embedded in a layer structure.

⁴⁵http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
⁴⁶http://fmc-modeling.org/
⁴⁷http://www.vincehuston.org/ood/oo_design_heuristics.html
⁴⁸https://www.nngroup.com/articles/ten-usability-heuristics/

http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://fmc-modeling.org/
http://www.vincehuston.org/ood/oo_design_heuristics.html
https://www.nngroup.com/articles/ten-usability-heuristics/
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://fmc-modeling.org/
http://www.vincehuston.org/ood/oo_design_heuristics.html
https://www.nngroup.com/articles/ten-usability-heuristics/

Glossary of Terms 30

IEEE-1471

Standard Recommended Practice for Architectural Description of Software-Intensive Systems,
defined as ISO/IEC 42010:2007. Defines a (abstract) framework for the description of software
architectures.

Incremental Development

see iterative and incremental development.

Information Hiding

A fundamental principle in software design: Keep those design or implementation decisions
hidden that are likely to change, thus protecting other parts of the system from modification
if these decisions or implementations are changed. Is one important attributes of blackboxes.
Separates interface from implementation.

The term encapsulation is often used interchangeably with information hiding.

Installability Quality Attribute

Degree of effectiveness and efficiency with which a product or system can be successfully
installed and/or uninstalled in a specified environment. Is a sub-characteristic of: portability.
Refer to ISO 25010⁴⁹ website.

Category: Quality, ISO 25010

Integrity

Various meanings:

Category: Security

One of the basic Security Goals which means maintaining and assuring accuracy and complete-
ness of data. Usually this is achieved by the usage of cryptographic algorithms to create a digital
signature.

Category: Foundation

Data or behavioral integrity:

• Degree to which clients (of a database) get identical results for identical queries (e.g.
Monotonic-Read-Consistency,Montonic-Write-Consistency, Read-Your-Writes-Consistency
etc.)

• Degree, to which a system behaves coherent, replicable and reasonable.

See also consistency.

⁴⁹http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Glossary of Terms 31

Integrity Quality Attribute

Degree to which a system, product or component prevents unauthorized access to, or modifi-
cation of, computer programs or data. Is a sub-characteristic of: security. Refer to ISO 25010⁵⁰
website.

Category: Quality, ISO 25010, Security

Interface

Multiple meanings, depending on context:

• Boundary across which two building blocks interact or communicate with each other.
• Design construct that provides an abstraction of the behavior of concrete components,
declares possible interactions with these components and constraints for these interactions.

Interface Segregation Principle (ISP)

Building blocks (classes, components) should not be forced to depend on methods they don’t use.
ISP splits larger interfaces into smaller and more (client) specific ones so that clients will only
need to know about methods that they actually use.

Interoperability Quality Attribute

Degree to which two or more systems, products or components can exchange information and
use the information that has been exchanged. Is a sub-characteristic of: compatibility. Refer to
ISO 25010⁵¹ website.

Category: Quality, ISO 25010

iSAQB

international Software Architecture Qualification Board – an internationally active organization
fostering the development of software architecture education. See also the discussion in the
appendix.

ISO 9126

(Deprecated) standard to describe (and evaluate) software product quality. Has been superseded
by ISO 25010, see below.

⁵⁰http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
⁵¹http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Glossary of Terms 32

ISO 25010

Standards to describe (and evaluate) software product quality. “The quality model determines
which quality characteristics will be taken into account when evaluating the properties of a
software product.” (quote from the ISO website⁵²)

For a list of quality attributes defined by the ISO 25010 standard, refer to ISO 25010

Iterative Development

“Development approach that cycles through development phases, from gathering requirements
to delivering functionality in a working release.” (quoted from c2-wiki⁵³)

Such cycles are repeated to improve either functionality, quality or both.

Contrast to theWaterfall Development .

Iterative and Incremental Development

Combination of iterative and incremental approaches for software development. These are
essential parts of the various agile development approaches, e.g. Scrum and XP.

Kerckhoffs’ Principle

One of the six cryptographic axioms described 1883 in an article “La cryptographie militaire” by
the dutch cryptographer and linguist Auguste Kerckhoffs. This axiom is still relevant today and
therefore refered to as “Kerckhoffs’ Principle”.

It describes that a cryptographic method must not need to be kept secret in order to achive the
security of the encrypted messages.

“The enemy knows the system” is another expression coined by the mathematician Claude
Shannon as Shannon’s Maxim.

See Bruce Schneiers Crypto-Gram, May 15, 2002⁵⁴

Category: Security

Latency

Latency is the time delay between the cause and the effect of some change in a system.

In computer networks, latency describes the time it takes for an amount of data (packet) to get
from one specific location to another.

In interactive systems, latency is the time interval between some input to the system and the
audio-visual response. Often a delay exists, often caused by network delays.

⁵²http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
⁵³http://c2.com/cgi/wiki?IterativeDevelopment
⁵⁴https://www.schneier.com/crypto-gram/archives/2002/0515.html

http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://c2.com/cgi/wiki?IterativeDevelopment
https://www.schneier.com/crypto-gram/archives/2002/0515.html
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://c2.com/cgi/wiki?IterativeDevelopment
https://www.schneier.com/crypto-gram/archives/2002/0515.html

Glossary of Terms 33

Layer

Grouping of building blocks or components that (together) offer a cohesive set of services to
other layers. Layers are related to each other by the ordered relation allowed to use.

Learnability Quality Attribute

Degree to which a product or system can be used by specified users to achieve specified goals
of learning to use the product or system with effectiveness, efficiency, freedom from risk and
satisfaction in a specified context of use. Is a sub-characteristic of: usability. Refer to ISO 25010⁵⁵
website.

Category: Quality, ISO 25010

Liskov Substitution Principle

Refers to object oriented programming: If you use inheritance, do it right: Instances of derived
types (subclasses) must be completely substitutable for their base types. If code uses a base
class, these references can be replaced with any instance of a derived class without affecting
the functionality of that code.

Maintainability Quality Attribute

Degree of effectiveness and efficiency with which a product or system can be modified to
improve it, correct it or adapt it to changes in environment, and in requirements. Is composed of
the following sub-characteristics: modularity, reusability, analysability, modifiability, testability.
Refer to ISO 25010⁵⁶ website.

Category: Quality, ISO 25010

Maturity Quality Attribute

Degree to which a system, product or component meets needs for reliability under normal
operation. Is a sub-characteristic of: reliability. Refer to ISO 25010⁵⁷ website.

Category: Quality, ISO 25010

MFA

For Multi-Factor-Authentication see Authentication.

Category: Security

⁵⁵http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
⁵⁶http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
⁵⁷http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Glossary of Terms 34

Microservice

An architectural style, proposing to divide large systems into small units. “Microservices have to
be implemented as virtual machines, as more light-weight alternatives such as Docker containers
or as individual processes. Thereby they can easily be brought into production individually.”
(quoted from the (free) LeanPub booklet on Microservices⁵⁸ by Eberhard Wolff⁵⁹)

Model Driven Architecture (MDA)

Model Driven Architecture (MDA)⁶⁰ is an OMG-Standard for model based software development.
Definition: “An approach to IT system specification that separates the specification of function-
ality from the specification of the implementation of that functionality on a specific technology
platform.”

Model-Driven Software Development (MDSD)

The underlying idea is to generate code from more abstract models of requirements or the
domain.

Model Kind

Conventions for a type of modeling (as defined in ISO/IEC/IEEE 42010).

Note, examples of model kinds include data flow diagrams, class diagrams, Petri nets, balance
sheets, organization charts and state transition models.

Category: ISO-IEC-IEEE-42010

Modeling Tool

A tool that creates models (e.g. UML or BPMNmodels). Can be used to create consistent diagrams
for documentation because it has the advantage that each model element exists only once but
can be consistently displayed in many diagrams (as opposed to a mere Drawing Tool).

Model-View-Controller

Architecture pattern, often used to implement user interfaces. It divides a system into three
interconnected parts (model, view and controller) to separate the following responsibilities:

• Model manages data and logic of the system. The “truth” that will be shown or displayed
by one or many views. Model does not know (depend on) its views.

• View can be any number of (arbitrary) output representation of (model) information.
Multiple views of the same model are possible.

• Controller accepts (user) input and converts those to commands for the model or view.
⁵⁸https://leanpub.com/microservices-primer
⁵⁹http://microservices-book.com
⁶⁰http://www.omg.org/mda/

https://leanpub.com/microservices-primer
http://microservices-book.com/
http://www.omg.org/mda/
https://leanpub.com/microservices-primer
http://microservices-book.com/
http://www.omg.org/mda/

Glossary of Terms 35

Modifiability Quality Attribute

Degree to which a product or system can be effectively and efficiently modified without intro-
ducing defects or degrading existing product quality. Is a sub-characteristic of: maintainability.
Refer to ISO 25010⁶¹ website.

Category: Quality, ISO 25010

Modularity Quality Attribute

Degree to which a system or computer program is composed of discrete components such that
a change to one component has minimal impact on other components. Is a sub-characteristic of:
maintainability. Refer to ISO 25010⁶² website.

Category: Quality, ISO 25010

Module

(see also Modular programming)

1. structural element or building block, usually regarded as a black box with a clearly defined
responsibility. It encapsulates data and code and provides public interfaces, so clients can
access its functionality. This meaning has first been described in a groundbreaking and
fundamental paper from David L. Parnas: On the Criteria to be Used in Decomposing
Software into Modules⁶³

2. In several programming languages,module is a construct for aggregating smaller program-
ming units, e.g. in Python. In other languages (like Java), modules are called packages.

3. The CPSA(R)-Advanced Level is currently divided into several modules, which can be
learned or taught separately and in any order. The exact relationships between these
modules and the contents of these modules are defined in the respective curricula.

Modular Programming

“Software design technique that separates the functionality of a program into independent,
interchangeable modules, so that each module contains everything necessary to execute only
one aspect of the desired functionality.

Modules have interfaces expressing the elements provided and required by the module. The
elements defined in the interface are detectable by other modules.” (quoted from Wikipedia⁶⁴)

Node (in UML)

A processing resource (execution environment, processor, machine, virtual machine, application
server) where artifacts can be deployed and executed.

⁶¹http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
⁶²http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
⁶³http://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf
⁶⁴https://en.wikipedia.org/wiki/Modular_programming

http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf
http://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf
https://en.wikipedia.org/wiki/Modular_programming
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf
https://en.wikipedia.org/wiki/Modular_programming

Glossary of Terms 36

Node (Node.js)

In modern web development: Short form for the open source JavaScript runtime Node.js®⁶⁵,
which is built on Chrome’s V8 JavaScript engine. Node.js is famous for its an event-driven, non-
blocking I/O model and its vast ecosystem of supporting libraries.

Non Functional Requirement (NFR)

Requirements that constrain the solution. Nonfunctional requirements are also known as quality
attribute requirements or quality requirements. The term NFR is actually misleading, as many
of the attributes involved directly relate to specific system functions (so modern requirements
engineering likes to call these things required constraints).

Non-repudiation Quality Attribute

Degree to which actions or events can be proven to have taken place, so that the events or actions
cannot be repudiated later. Is a sub-characteristic of: security. Refer to ISO 25010⁶⁶ website.

Category: Quality, ISO 25010

Notation

A system of marks, signs, figures, or characters that is used to represent information. Examples:
prose, table, bullet point list, numbered list, UML, BPMN.

Observer

(Design pattern) “… in which an object, called the subject, maintains a list of its dependents,
called observers, and notifies them automatically of any state changes, usually by calling one of
their methods.” (quoted from Wikipedia⁶⁷) The Observer pattern is a key pattern to complement
the model–view–controller (MVC) architectural pattern.

Open-Close-Principle (OCP)

“Software entities (classes, modules, functions, etc.) should be open for extension, but closed
for modification” (Bertrand Meyer, 1998). In plain words: To add functionality (extension) to a
system, you should not need to modify existing code. Part of Robin Martins “SOLID” principles
for object-oriented systems. Can be implemented in object oriented languages by interface
inheritance, in a more general way as plugins.

⁶⁵https://nodejs.org/en/
⁶⁶http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
⁶⁷https://en.wikipedia.org/wiki/Observer_pattern

https://nodejs.org/en/
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://en.wikipedia.org/wiki/Observer_pattern
https://nodejs.org/en/
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://en.wikipedia.org/wiki/Observer_pattern

Glossary of Terms 37

Operability Quality Attribute

Degree to which a product or system has attributes that make it easy to operate and control. Is
a sub-characteristic of: usability. Refer to ISO 25010⁶⁸ website.

Category: Quality, ISO 25010

OWASP

The Open Web Application Security Project is a worldwide non-profit online organization
founded 2001 for improving the security of software. It is a rich source for information and best
practices in the field of web security. See https://www.owasp.org/⁶⁹.

The OWASP-Top-10 is a frequently referenced list of attack categories based on the projects data
survey.

Category: Security

Package Principles

Fundamental principles for designing the structure of software systems (Martin-2003):

• Reuse/Release Equivalence Principle (REP)
• Common Reuse Principle (CRP)
• Common Closure Principle (CCP)
• Acyclic Dependencies Principle (ADP)
• Stable Dependencies Principle (SDP)
• Stable Abstractions Principle (SAP)

Robert C. Martin, who coined the “SOLID” acronym, also introduced the Package Principles⁷⁰
and frequently reiterated both in conjunction. Whereas the SOLID Principles target the level of
classes, the Package Principles target the level of larger components that contain multiple classes
and might get deployed independently.

Package- and SOLID Principles share the explicit goal of keeping software maintainable and
avoiding the symptoms of degraded design: rigidity, fragility, immobility, and viscosity.

While Martin expressed the Package Principles in terms of large-scale components, they apply at
other scales as well. Their core are universal principles like low coupling, high cohesion, single re-
sponsibility, hierarchical (acyclic) decomposition, and the insight that meaningful dependencies
go from specific/unstable concepts to more abstract/stable ones (which echoes the DIP).

Category: Design-Principle

⁶⁸http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
⁶⁹https://www.owasp.org/
⁷⁰[RobertC.Martin](http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod)

http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://www.owasp.org/
[Robert C. Martin](http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod)
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://www.owasp.org/
[Robert C. Martin](http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod)

Glossary of Terms 38

Pattern

A reusable or repeatable solution to a common problem in software design or architecture.

See architecture pattern or design pattern.

Perfect Forward Secrecy

Property of a cryptographic protocol were an attacker can’t gain any information about short-
term session keys by compromising long-term keys.

Examples for protocols with perfect forward secrecy are TLS and OTR. If this feature is enabled
for TLS and an attacker gains access to a servers private key, previously recorded communication
sessions can still not be decrypted.

Category: Security

Performance Efficiency Quality Attribute

Performance relative to the amount of resources used under stated conditions.

Resources can include other software products, the software and hardware configuration of the
system, and materials (e.g. print paper, storage media).

Is composed of the following sub-characteristics: time behaviour, resource utilization, capacity.

Refer to ISO 25010⁷¹ website.

Category: Quality, ISO 25010

Perspective

A perspective is used to consider a set of related quality properties and concerns of a system.

Architects apply perspectives iteratively to the system’s architectural views in order to assess the
effects of architectural design decisions across multiple viewpoints and architectural views.

Rozanski+11 associates with the term perspective also activities, tactics, and guidelines that must
be considered if a system should provide a set of related quality properties and suggests the
following perspectives:

• Accessibility
• Availability and Resilience
• Development Resource
• Evolution
• Internationalization
• Location
• Performance and Scalability
• Regulation
• Security
• Usability
⁷¹http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Glossary of Terms 39

Pikachu

A yellowish mouse-like character from the (quite famous) Pokémon world⁷². Actually, you don’t
need to know that. But it does not hurt either - and you might impress your kids with this
knowledge…

Pipe

Connector in the pipes-and-filters architectural style that transfers streams or chunks of data
from the output of one filter to the input of another filter without modifying values or order of
data.

PKI

Short for Public-Key-Infrastructure. A concept of managing digital certificates usually involv-
ing asymmetric cryptography. The term “public” refers most of the time to the used type of
cryptographic key and not necessarily to infrastructure open to a public audience. To prevent
semantic confusion the terms “open PKI” or “closed PKI” can be used, see Anderson, Chapter
21.4.5.7 PKI, page 672.

PKI is usually based on a CA or a Web-of-Trust.

Category: Security

Port

UML construct, used in component diagrams. An interface, defining a point of interaction of a
component with its environment.

Portability Quality Attribute

Degree of effectiveness and efficiency with which a system, product or component can be
transferred from one hardware, software or other operational or usage environment to another.
Is composed of the following sub-characteristics: adaptability, installability, replaceability. Refer
to ISO 25010⁷³ website.

Category: Quality, ISO 25010

POSA

Pattern-oriented Software Architecture. Series of books on software architecture patterns.

⁷²https://simple.wikipedia.org/wiki/Pikachu
⁷³http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

https://simple.wikipedia.org/wiki/Pikachu
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://simple.wikipedia.org/wiki/Pikachu
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Glossary of Terms 40

Principal

Principals in a security context are entities which have been authenticated and can be assigned
permissions to. A principal can be a user but for example also other services or a process running
on a system. The term is used in the Java environment⁷⁴ and throughout different authentication
protocols (see GSSAPI RFC2744⁷⁵ or Kerberos RFC4121⁷⁶).

Category: Security

Proxy

(Design pattern) “A wrapper or agent object that is being called by the client to access the real
serving object behind the scenes. Use of the proxy can simply be forwarding to the real object,
or can provide additional logic. In the proxy extra functionality can be provided, for example
caching when operations on the real object are resource intensive, or checking preconditions
before operations on the real object are invoked. For the client, usage of a proxy object is similar
to using the real object, because both implement the same interface.” (quoted from Wikipedia⁷⁷)

Pseudo-Randomness

Often used in conjunctionwith pseudo-random-number-generators. Gathering randomness with
a high entropy is resource intensive and usually not required bymany applications, cryptography
left aside. To address this issue pseudo-random-generators are initialized with a seed of data and
create random values based on this seed. The data will be generated by random, but will always
be the same if the generator is initializedwith an identical seed. This is called pseudo-randomness
and is less performance intensive.

Category: Security

Qualitative Evaluation

Finding risks concerning the desired quality attributes of a system. Analyzing or assessing if a
system or its architecture can meet the desired or required quality goals.

Instead of calculating or measuring certain characteristics of systems or architectures, qualitative
evaluation is concerned with risks, trade-offs and sensitivity points.

See also assessment .

Quality

see software quality and quality attributes.

⁷⁴https://docs.oracle.com/javase/8/docs/api/java/security/Principal.html
⁷⁵https://tools.ietf.org/html/rfc2744
⁷⁶https://tools.ietf.org/html/rfc4121
⁷⁷https://en.wikipedia.org/wiki/Proxy_pattern

https://docs.oracle.com/javase/8/docs/api/java/security/Principal.html
https://tools.ietf.org/html/rfc2744
https://tools.ietf.org/html/rfc4121
https://en.wikipedia.org/wiki/Proxy_pattern
https://docs.oracle.com/javase/8/docs/api/java/security/Principal.html
https://tools.ietf.org/html/rfc2744
https://tools.ietf.org/html/rfc4121
https://en.wikipedia.org/wiki/Proxy_pattern

Glossary of Terms 41

Quality Attribute

Software quality is the degree to which a system possesses the desired combination of attributes
(see: software quality).

The Standard ISO-25010 defines the following quality attributes:

• Functional suitability
– Functional completeness
– Functional correctness
– Functional appropriateness

• Performance efficiency
– Time behaviour
– Resource utilization
– Capacity

• Compatibility
– Co-existence
– Interoperability

• Usability
– Appropriateness recognizability
– Learnability
– Operability
– User error protection
– User interface aesthetics
– Accessibility

• Reliability
– Availability
– Fault tolerance
– Recoverability

• Security
– Confidentiality
– Integrity
– Non-repudiation
– Accountability
– Authenticity

• Maintainability
– Modularity
– Reusability
– Analysability
– Modifiability
– Testability

• Portability
– Adaptability

Glossary of Terms 42

– Installability
– Replaceability

It’s helpful to distinguish between:

• runtime quality attributes (which can be observed at execution time of the system),
• non-runtime quality attributes_ (which cannot be observed as the system executes) and
• business quality attributes (cost, schedule, marketability, appropriateness for organization)

Examples of runtime quality attributes are functional suitability, performance efficiency, security,
reliability, usability and interoperability.

Examples of non-runtime quality attributes are modifiability, portability, reusability, integrata-
bility, and testability.

Quality Characteristic

synonym: quality attribute.

Quality Model

(from ISO 25010) A model that defines quality characteristics that relate to static properties of
software and dynamic properties of the computer system and software products. The quality
model provides consistent terminology for specifying, measuring and evaluating system and
software product quality.

The scope of application of the quality models includes supporting specification and evaluation
of software and software-intensive computer systems from different perspectives by those asso-
ciated with their acquisition, requirements, development, use, evaluation, support, maintenance,
quality assurance and control, and audit.

Quality Requirement

Characteristic or attribute of a component of a system. Examples include runtime performance,
safety, security, reliability or maintainability. See also software quality.

Quality Tree

(syn: quality attribute utility tree). A hierarchical model to describe product quality: The root
“quality” is hierarchically refined in areas or topics, which itself are refined again. Quality
scenarios form the leaves of this tree.

• Standards for product quality, like ISO 25010, propose generic quality trees.
• The quality of a specific system can be described by a specific quality tree (see the example
below).

Glossary of Terms 43

Sample Quality Tree

Quantitative Evaluation

(syn: quantative analysis): Measure or count values of software artifacts, e.g. coupling, cyclomatic
complexity, size, test coverage. Metrics like these can help to identify critical parts or elements
of systems.

Randomness

See Entropy or Pseudo-Randomness.

Category: Security

Rationale

Explanation of the reasoning or arguments that lie behind an architecture decision.

RBAC (Role Based Access Control)

A role is a fixed set of permissions usually assigned to a group of principals. This allows a Role-
Based-Access-Control usually to be implemented more efficient than an ACL based system and
makes for example deputy arrangements possible.

Category: Security

Recoverability Quality Attribute

Degree to which, in the event of an interruption or a failure, a product or system can recover the
data directly affected and re-establish the desired state of the system. Is a sub-characteristic of:
reliability. Refer to ISO 25010⁷⁸ website.

Category: Quality, ISO 25010

⁷⁸http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Glossary of Terms 44

Redesign

The alteration of software units in such a way that they fulfill a similar purpose as before, but in
a different manner and possibly by different means. Often mistakenly called refactoring.

Refactoring

A term denoting the improvement of software units by changing their internal structure without
changing the behavior. (see “Refactoring is the process of changing a software system in such a
way that it does not alter the external behavior of the code yet improves the internal structure.”
Refactoring, Martin Fowler, 1999
Not to be confused with redesign

Registry

“A well-known object that other objects can use to find common objects and services.” (quoted
from PoEAA⁷⁹). Often implemented as a Singleton (also a well-known design pattern.)

Reliability Quality Attribute

Degree to which a system, product or component performs specified functions under specified
conditions for a specified period of time. Is composed of the following sub-characteristics:
maturity, availability, fault tolerance, recoverability. Refer to ISO 25010⁸⁰ website.

Category: Quality, ISO 25010

Relationship

Generic term denoting some kind of dependency between elements of an architecture. Different
types of relationship are usedwithin architectures, e.g. call, notification, ownership, containment,
creation or inheritance.

Replaceability Quality Attribute

Degree to which a product can replace another specified software product for the same purpose
in the same environment. Is a sub-characteristic of: portability. Refer to ISO 25010⁸¹ website.

Category: Quality, ISO 25010

Repository

In architecture documentation: A place where artifacts are stored before an automatic build
process collects them into one consistent document. In Domain-Driven Design: Repository is a
building block of Domain-Driven Design. A repository hides technical details of the infrastruc-
ture layer to the domain layer. Repositories return entities that are persisted in the database.

⁷⁹http://martinfowler.com/eaaCatalog/registry.html
⁸⁰http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
⁸¹http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

http://martinfowler.com/eaaCatalog/registry.html
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://martinfowler.com/eaaCatalog/registry.html
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Glossary of Terms 45

Resource Utilization Quality Attribute

Degree to which the amounts and types of resources used by a product or system, when
performing its functions, meet requirements. Is a sub-characteristic of: performance efficiency.
Refer to ISO 25010⁸² website. Category: Quality, ISO 25010

Reusability Quality Attribute

Degree to which an asset can be used in more than one system, or in building other assets. Is a
sub-characteristic of: maintainability. Refer to ISO 25010⁸³ website.

Category: Quality, ISO 25010

Reuse/Release Equivalence Principle

A fundamental principle for designing the structure of software systems (also see Package
Principles). It demands that large components are “released” and under version control, in
particular if the system uses them from multiple points. Even if we don’t release them publicly,
we should extract such components from the system and provide them through an external
dependency manager with proper version control.

The REP contains two different insights:

1. On the large scale, modularity and low coupling require more than type separation.
2. Reusability of components (even if all “reuse” is internal) translates to overall maintainabil-

ity.

Category: Design-Principle

Risk

Simply said, a risk is the possibility that a problem occurs. A risk involves uncertainty about
the effects, consequences or implications of an activity or decision, usually with a negative
connotation concerning a certain value (such as health, money, or qualities of a system like
availability or security).

RM/ODP

The Reference Model for Open Distributed Processing⁸⁴ is an (abstract) metamodel for documen-
tation of information systems. Defined in ISO/IEC 10746.

⁸²http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
⁸³http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
⁸⁴https://en.wikipedia.org/wiki/RM-ODP

http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://en.wikipedia.org/wiki/RM-ODP
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://en.wikipedia.org/wiki/RM-ODP

Glossary of Terms 46

Round-trip Engineering

“Concept of being able to make any kind of change to a model as well as to the code generated
from that model. The changes always propagate bidirectional and both artifacts are always
consistent.” (quoted from Wikipedia⁸⁵)

Comment (Gernot Starke)
In my personal opinion, it does not work in practical situations, only in hello-world-
like scenarios, as the inverse abstraction (from low-level sourcecode to higher-level
architectural elements) usually involves design-decisions and cannot realistically be
automated.

Comment (Matthias Bohlen)
Recently I have seen code that originated from DDD where reverse engineering did
indeed work.

Ruby

A wonderful programming language.

Category: Programming

Runtime View

Shows the cooperation or collaboration of building blocks (respectively their instances) at
runtime in concrete scenarios. Should refer to elements of the Building Block View. Could for
example (but doesn’t need to) be expressed in UML sequence or activity diagrams.

Scenario

Quality scenarios document required quality attributes. They help to describe required or desired
qualities of a system, in pragmatic and informal manner, yet making the abstract notion of
“quality” concrete and tangible.

Generic form of (Quality) scenario

⁸⁵https://en.wikipedia.org/wiki/Model-driven_software_development

https://en.wikipedia.org/wiki/Model-driven_software_development
https://en.wikipedia.org/wiki/Model-driven_software_development

Glossary of Terms 47

• Event/stimulus: Any condition or event arriving at the system
• System (or part of the system) is stimulated by the event.
• Response: The activity undertaken after the arrival of the stimulus.
• Metric (response measure): The response should be measurable in some fashion.

SDL

A Secure-Development-Lifecycle is a companies usual software development process with
additional practices of engineering secure software. This involves for example code reviews,
architectural risk analyses, black/whitebox and penetration testing and many more additions.
The whole lifecycle of an application should be covered by the SDL, beginning with the first
requirements engineering tasks and ending with feedback from operating the released software
by fixing security issues.

See McGraw “An Enterprise Software Security Program”, page 239.

Category: Security

Security Goals

The goals are the key point of information security. They are a basic set of information attributes
which can be fulfilled or not depending on a systems architecture and processes.

The most common agreed set of security goals is the so called “CIA triad”:

• Confidentiality
• Integrity
• Availability

The “Reference Model of Information Assuarance and Security” (RIMAS) extends this list by
Accountability, Auditability, Authenticity/Trustworthiness, Non-repudiation and Privacy.

These are typical examples for non-functional requirements related to security.

See “What is Security Engineering - Definitions”, page 11 or RMIAS.

Category: Security

Security Quality Attribute

Degree to which a product or system protects information and data so that persons or other
products or systems have the degree of data access appropriate to their types and levels of
authorization. Is composed of the following sub-characteristics: confidentiality, integrity, non-
repudiation, accountability, authenticity. Refer to ISO 25010⁸⁶ website.

Category: Quality, ISO 25010

⁸⁶http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Glossary of Terms 48

Self Contained System (SCS)

An architectural style, similar to Microservices. To quote from the site scs-architecture.org⁸⁷:

“The Self-contained System (SCS) approach is an architecture that focuses on a separation of the
functionality into many independent systems, making the complete system a collaboration of
many smaller software systems. This avoids the problem of large monoliths that grow constantly
and eventually become unmaintainable”

Sensitivity Point

(in qualitative evaluation like ATAM): Element of the architecture or system influencing several
quality attributes. For example, if one component is responsible for both runtime performance
and robustness, that component is a sensitivity point.

Casually said, if youmess up a sensitivity point, you will most often have more than one problem.

Separation of Concerns (SoC)

Any element of an architecture should have exclusivity and singularity of responsibility and
purpose: No element should share the responsibilities of another element or contain unrelated
responsibilities.

Another definition is “breaking down a system into elements that overlap as little as possible.”

Famous Edgar Dijkstra said in 1974: “Separation of concerns … even if not perfectly possible, is
the only available technique for effective ordering of one’s thoughts”.

Similar to the Single Responsibility Principle.

Sequence Diagram

Type of diagram to illustrate how elements of an architecture interact to achieve a certain
scenario. It shows the sequence (flow) of messages between elements. As parallel vertical lines it
shows the lifespan of objects or components, horizontal lines depict interactions between these
components. See the following example.

⁸⁷http://scs-architecture.org/

http://scs-architecture.org/
http://scs-architecture.org/

Glossary of Terms 49

Example of Sequence Diagram

Service

t.b.d.

Service (DDD)

Service is a building block of Domain-Driven Design. Services implement logic or processes
of the business domain that are not executed by entities alone. A service is stateless and the
parameters and return values of its operations are entities, aggregates and value objects.

Signature

Signature of function or method: See function signature

Digital signature: Method for verifying the authenticity of data or documents.

Singleton

“Design pattern that restricts the instantiation of a class to one object. This is useful when exactly
one object is needed to coordinate actions across the system.” (quoted from Wikipedia⁸⁸.

⁸⁸https://en.wikipedia.org/wiki/Singleton_pattern

https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern

Glossary of Terms 50

Single Responsibility Principle (SRP)

Each element within a system or architecture should have a single responsibility, and that all its
functions or services should be aligned with that responsibility.

Cohesion is sometimes considered to be associated with the SRP.

Software Architecture

There exist several (!) valid and plausible definitions of the term Software Architecture.

The following definition has been proposed by the IEEE 1471⁸⁹ standard:

Software Architecture: the fundamental organization of a system embodied in its components,
their relationships to each other and to the environment and the principles guiding its design
and evolution.

The new standard ISO/IEC/IEEE 42010:2011 has adopted and revised the definition as follows:

Architecture: (system) fundamental concepts or properties of a system in its environment
embodied in its elements, relationships, and in the principles of its design and evolution.

The key terms in this definition require some explanation:

• Components: Subsystems, modules, classes, functions or the more general term building
blocks: structural elements of software: Components are usually implemented in a program-
ming language, but can also be other artifacts that (together) make up the system.

• Relationships: Interfaces, dependencies, associations - different names for the same feature:
Components need to interact with other components to enable separation of concerns.

• Environment: Every system has some relationships to its environment: data, control flow
or events are transferred to and from maybe different kinds of neighbours.

• Principles: Rules or conventions that hold for a system or several parts of it. Decision or
definition, usually valid for several elements of the system. Often called concepts or even
solution patterns. Principles (concepts) are the foundation for conceptual integrity.

The Software Engineering Institure maintains a collection of further definitions⁹⁰

Although the term often refers to the software architecture of an IT system, it is also used to refer
to software architecture as an engineering science.

Category: ISO-IEC-IEEE-42010

⁸⁹https://en.wikipedia.org/wiki/IEEE_1471
⁹⁰http://www.sei.cmu.edu/architecture/start/glossary/classicdefs.cfm

https://en.wikipedia.org/wiki/IEEE_1471
http://www.sei.cmu.edu/architecture/start/glossary/classicdefs.cfm
https://en.wikipedia.org/wiki/IEEE_1471
http://www.sei.cmu.edu/architecture/start/glossary/classicdefs.cfm

Glossary of Terms 51

Software Quality

(from IEEE Standard 1061): Software quality is the degree to which software possesses a desired
combination of attributes. This desired combination of attributes need to be clearly defined;
otherwise, assessment of quality is left to intuition.

(from ISO/IEC Standard 25010): The quality of a system is the degree to which the system satisfies
the stated and implied needs of its various stakeholders, and thus provides value. These stated
and implied needs are represented in the ISO 25000 qualitymodels that categorize product quality
into characteristics, which in some cases are further subdivided into subcharacteristics.

S.O.L.I.D. principles

SOLID (single responsibility, open-closed, Liskov substitution, interface segregation and depen-
dency inversion) is an acronym for some principles (named by Robert C. Martin⁹¹) to improve
object-oriented programming and design. The principles make it more likely that a developer
will write code that is easy to maintain and extend over time.

For some additional sources, see Martin-SOLID.

Stable Abstractions Principle

A fundamental principle for designing the structure of software systems (also see Package
Principles). It demands that the abstractness of components is proportional to their stability. The
closely related SDP also explains the notion of stability in this context.

We want components that represent abstract concepts and responsibilities to require little or no
modification because many conceptually more specific (concrete) components depend on them.
And we want components that should or could not easily change to be at least abstract enough
so we can extend them. This relates to the OCP.

The SAP can sound like a circular argument until the underlying idea shines through: Concrete
things and concepts are naturally more volatile, specific, arbitrary and numerous than abstract
ones. The component structure of a system simply should reflect that. General logic, the system’s
physical artifacts as well as its functional and technical concepts should all be in congruence.

The SAP is closely related to the SDP. Their combination amounts to a more general and
arguably more profound version of the DIP: Specific concepts naturally depend on more abstract
ones because they are composed or derived from more general-purpose building blocks. And
dependent concepts are naturally more specific because they are defined by more information
than their dependencies (assuming there are no dependence cycles).

Category: Design-Principle

Stable Dependencies Principle

A fundamental principle for designing the structure of software systems (also see Package
Principles). It demands that frequently changing components depend on more stable ones.

⁹¹http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

Glossary of Terms 52

Part of the volatility of a component is expected and naturally implied by its particular respon-
sibility.

But stability in this context is also a function of incoming and outgoing dependencies. A
component that is heavily depended on by others is harder to change and condsidered to be
more stable. A component that heavily depends on others has more reasons to change and is
considered to be less stable.

So in regards to dependence, a component with many clients should not depend on one with
many dependencies. A single component with both of these properties is also a red flag. Such a
component has many reasons to change but is at the same time hard to change.

Original definitions of the SDP (like Martin-2003) involve a metric I of instability⁹². Unfortu-
nately, that metric doesn’t capture intended/inherent volatility, transitive dependence or cases
like the red flag mentioned above. But we value the idea of the SDP regardless of how it can be
measured.

The SDP is closely related to the SAP. Their combination amounts to a version of the DIP (more
on this under SAP).

Category: Design-Principle

Stakeholder

Person or organization that can be affected by or have in interest (stake) in a system, its
development or execution.

Examples include users, employees, owners, administrators, developers, designers, project- or
product-managers, product-owner, project manager, requirements engineers, business-analysts,
government agencies, enterprise architects etc.

Following ISO/IEC/IEEE 42010 a stakeholder is a (system) individual, team, organization, or
classes thereof, having an interest in a system (as defined in ISO/IEC/IEEE 42010).

Such interest can be positive (e.g. stakeholder wants to benefit from the system), neutral (stake-
holder has to test or verify the system) or negative (stakeholder is competing with the system or
wants it to fail).

Category: ISO-IEC-IEEE-42010

Structure

An arrangement, order or organization of interrelated elements in a system. Structures consist
of building blocks (structural elements) and their relationships (dependencies).

Structures in software architecture are often used in architecture views, e.g. the building block
view. A documentation template (e.g. arc42) is a kind of structure too.

Structural Element

see [Building Block(#term-building-block) or Component

⁹²https://en.wikipedia.org/wiki/Software_package_metrics

https://en.wikipedia.org/wiki/Software_package_metrics
https://en.wikipedia.org/wiki/Software_package_metrics

Glossary of Terms 53

Symmetric Cryptography

Symmetric cryptography is based on an identical key for encryption and decryption of data.
Sender and receiver have to agree on a key for communication. See Schneier, Symmetric
Algorithms, page 17.

Category: Security

System

Collection of elements (building blocks, components etc) organized for a common purpose.

In ISO/IEC/IEEE Standards a couple of system definitions are available:

• systems as described in [ISO/IEC 15288]: “systems that are man-made and may be config-
ured with one or more of the following: hardware, software, data, humans, processes (e.g.,
processes for providing service to users), procedures (e.g. operator instructions), facilities,
materials and naturally occurring entities”.

• software products and services as described in [ISO/IEC 12207].
• software-intensive systems as described in [IEEE Std 1471:2000]: “any system where soft-
ware contributes essential influences to the design, construction, deployment, and evolution
of the system as a whole” to encompass “individual applications, systems in the traditional
sense, subsystems, systems of systems, product lines, product families, whole enterprises,
and other aggregations of interest”.

Category: ISO-IEC-IEEE-42010

System-of-Interest

System-of-Interest (or simply, system) refers to the system whose architecture is under consid-
eration in the preparation of an architecture description (as defined in ISO/IEC/IEEE 42010).

Category: ISO-IEC-IEEE-42010

Template (for Documentation)

Standardized order of artifacts used in software development. It can help base other files,
especially documents in a predefines structure without prescribing the content of these single
files.

A well known example of such templates is arc42⁹³

⁹³http://arc42.de

http://arc42.de/
http://arc42.de/

Glossary of Terms 54

Temporal Coupling

Different interpretations exist from various sources. Temporal coupling:

• means that processes that are communicating will both have to be up and running. See
Tanenbaum+2016.

• when you often commit (modify) different components at the same time. See Tornhill-2015.
• when there’s an implicit relationship between two, or more, members of a class requiring
clients to invoke one member before the other. Mark Seemann, see https://blog.ploeh.dk/
2011/05/24/DesignSmellTemporalCoupling/

• means that one system needs to wait for the response of another system before it can
continue processing. See https://www.beeworks.be/blog/2017/rest-antipattern.html

Testability Quality Attribute

Degree of effectiveness and efficiency with which test criteria can be established for a system,
product or component and tests can be performed to determine whether those criteria have been
met. Is a sub-characteristic of: maintainability. Refer to ISO 25010⁹⁴ website. Category: Quality,
ISO 25010

Time Behaviour Quality Attribute

Degree to which the response and processing times and throughput rates of a product or sys-
tem, when performing its functions, meet requirements. Is a sub-characteristic of: performance
efficiency. Refer to ISO 25010⁹⁵ website.

Category: Quality, ISO 25010

TLS

Transport-Layer-Security is a set of protocols to cryptographically secure the communication of
two partys by the means of the CIA-triad. It is widely used for secure communication on the
internet and the foundation for HTTPS.

TLS started as an update to its predecessor SSL (Secure Socket Layer) Version 3.0 and should be
used now instead of SSL see RFC7568 “Deprecating Secure Sockets Layer Version 3.0”⁹⁶.

Category: Security

TOGAF

The Open Group Architecture Framework⁹⁷ is a conceptual framework for planning and mainte-
nance of enterprise IT architectures.

⁹⁴http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
⁹⁵http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
⁹⁶https://tools.ietf.org/html/rfc7568
⁹⁷http://www.opengroup.org/subjectareas/enterprise/togaf

https://blog.ploeh.dk/2011/05/24/DesignSmellTemporalCoupling/
https://blog.ploeh.dk/2011/05/24/DesignSmellTemporalCoupling/
https://www.beeworks.be/blog/2017/rest-antipattern.html
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://tools.ietf.org/html/rfc7568
http://www.opengroup.org/subjectareas/enterprise/togaf
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://tools.ietf.org/html/rfc7568
http://www.opengroup.org/subjectareas/enterprise/togaf

Glossary of Terms 55

Tools-and-material-approach

t.b.d.

Top-Down

“Direction of work” or “order of communication”: Starting from an abstract or general construct
working towards more concrete, special or detailed representation.

Traceability

(more precisely: requirements traceability): Document that

1. all requirements are addressed by elements of the system (forward traceability) and
2. all elements of the system are justified by at least one requirement (backward traceability)

My personal opinion: If you can, you should avoid traceabiltiy, as it creates a lot of documentation
overhead.

Trade-Off

(syn: compromise). A balance achieved or negotiated between two desired or required but
usually incompatible or contradicting features. For example, software development usually has
to tradeoff memory consumption and runtime speed.

More colloquially, if one thing increases, some other thing must decrease.

Even more colloquially: There is no free lunch. Every quality attribute has a price among other
quality attributes.

Trainer

A trainer is a person who conducts a training course himself, provided that this is carried out
within the framework of a accreditation granted to an accredited training provider. Accordingly,
accredited training providers may only organise and conduct CPSA training courses with
accredited trainers. Only accredited training providers can apply for trainer accreditations.

Training Level

The iSAQB® CPSA education programme is divided into (currently) two Training Levels: Foun-
dation Level and Advanced Level. The Training Levels should contain knowledge that builds
upon one another. The exact relationships between each other and the contents of the Training
Level are defined in the respective curricula (syllabi).

Glossary of Terms 56

Training Provider

An organisation or person who holds the rights of use to accredited training materials or who has
purchased accreditation for training materials, provides trainers and infrastructure and conducts
training courses.

Ubiquitous Language

A concept of Domain-Driven Design: The ubiquitous language is a language that is structured
around the domain model. It is used by all team members to connect all the activities of the team
with the software. The ubiquitous language is a living thing that is evolving during a project and
will be changed during the whole live cycle of the software.

Unified Modeling Language (UML)

(UML)⁹⁸ is a graphical language for visualizing, specifying and documenting the artifacts and
structures of a software system.

• For building block views or the context view, use component diagrams, with either compo-
nents, packages or classes to denote building blocks.

• For runtime views, use sequence- or activity diagrams (with swimlanes). Object diagrams
can theoretically be used, but are practically not adviced, as they become cluttered even for
small scenarios.

• For Deployment views, use deployment diagrams with node symbols.

Unit Test

Test of the smallest testable parts of system to determine whether they are fit for use.

Depending on implementation technology, a unit might be a method, function, interface or
similar element.

Usability Quality Attribute

Degree to which a product or system can be used by specified users to achieve specified goals
with effectiveness, efficiency and satisfaction in a specified context of use. Is composed of
the following sub-characteristics: appropriateness recognizability, learnability, operability, user
error protection, user interface aesthetics, accessibility. Refer to ISO 25010⁹⁹ website. Category:
Quality, ISO 25010

User Error Protection Quality Attribute

Degree towhich a system protects users againstmaking errors. Is a sub-characteristic of: usability.
Refer to ISO 25010¹⁰⁰ website. Category: Quality, ISO 25010

⁹⁸http://uml.org
⁹⁹http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
¹⁰⁰http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

http://uml.org/
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://uml.org/
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Glossary of Terms 57

User Interface Aesthetics Quality Attribute

Degree to which a user interface enables pleasing and satisfying interaction for the user. Is a
sub-characteristic of: usability. Refer to ISO 25010¹⁰¹ website. Category: Quality, ISO 25010

Uses Relationship

Dependency that exists between two building blocks. If A uses B than execution of A depends
on the presence of a correct implementation of B.

Value Object

Value Object is a building block of Domain-Driven Design. ValueObjects do not have a concep-
tual identity of their own and should be treated as immutable. They are used to describe the state
of entities and may be composed of other value objects but never of entities.

View

see: architecture view

Waterfall Development

Development approach “where you gather all the requirements up front, do all necessary design,
down to a detailed level, then hand the specs to the coders, who write the code; then you do
testing (possibly with a side trip to IntegrationHell) and deliver the whole thing in one big end-
all release. Everything is big including the risk of failure.” (quoted from the C2 wiki¹⁰²)

Contrast to iterative development .

Web of Trust

Since a single CA could be an easy target for an attacker the web of trust delegates the
establishment of trust to the user. Each user decides which other users proof of identity he trusts,
usually by verifying a fingerprint of a given key. This trust is expressed by signing the key of the
other user who can then publish it with the additional signature. A third user can then verify
this signature and decide to trust the identity or not.

The email encryption PGP is an example for a PKI based on a web of trust.

Category: Security

White Box

Shows the internal structure of a system or building block, made up from blackboxes and the
internal/external relationships and interfaces.

See also Black Box.
¹⁰¹http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
¹⁰²http://c2.com/cgi/wiki?IterativeDevelopment

http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://c2.com/cgi/wiki?IterativeDevelopment
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://c2.com/cgi/wiki?IterativeDevelopment

Glossary of Terms 58

Workflow Management System (WFMS)

Provides an infrastructure for the set-up, performance and monitoring of a defined sequence of
tasks, arranged as a workflow. (quoted from Wikipedia)

Wrapper

(syn: Decorator, Adapter, Gateway) Patterns to abstract away the concrete interface or imple-
mentation of a component. Attach additional responsibilities to an object dynamically.

Depending on the sources, the semantics of the term wrapper may vary.

Comment (Gernot Starke)
The tiny differences found in literature regarding this term often don’t matter in real-life.
Wrapping a component or building-block shall have a clear semantics within a single
software system.

Translations
Here you find translations of the terms between English and German (see below) and German-
to-English (next section).

Several of these terms are based in the legal and organizational foundations of the iSAQB
association (and therefore not related to software architecture).

The following translations are maintained¹⁰³ in a simple JSON input file, contained within this
books’ open source Github repository¹⁰⁴.

Translations English to German

Please note: This translation table is not supposed to be complete, several English terms will
not be translated but preferably used in their original language (e.g. many of the design pattern
names).

The following tables have been automatically generated¹⁰⁵ from JSON by Groovy and Gradle.

English German
Adaption Anpassung
Adequacy Angemessenheit
Approach Ansatz
Appropriateness Angemessenheit
Architectural objective Architekturziel
Architectural pattern Architekturmuster
Architectural view Architektursicht, Sicht
Architecture assessment Architekturanalyse, Architekturbewertung
Architecture evaluation Architekturbewertung, Architekturanalyse
Architecture objective Architekturziel
Articles of assocation Satzung des Vereins
Artifact Artefakt
Aspect Aspekt, Belang
Assessment Bewertung, Begutachtung, Einschätzung,

Untersuchung
Association Verein, Beziehung
Attack Tree Angriffsbäume
Availability Verfügbarkeit
Building block Baustein

¹⁰³The documentation found in https://github.com/isaqb-org/glossary contains all information required to generate the translation
tables. Currently, only English and German are supported. The translation tables are maintained in JSON format, suggestions for
improvements are highly welcome!
¹⁰⁴https://github.com/isaqb-org/glossary
¹⁰⁵133 english terms, generated on Oktober/04/2016

https://github.com/isaqb-org/glossary
https://github.com/isaqb-org/glossary

Translations 60

English German
Building block view Bausteinsicht
Business Fachlichkeit, Domäne
Business architecture fachliche Architektur, Geschäftsarchitektur
Cabinet (as methaphor for template) Schrank (als Metapher für Template)
Cash audit Rechnungsprüfung
Cash auditor Rechnungsprüfer
Certification authority Zertifizierungsstelle
Certification body Zertifizierungsstelle
Chairman Vorsitzender
Channel Kanal
Cohesion Kohäsion, innerer Zusammenhalt
Commensurability Angemessenheit, Messbarkeit, Vergleichbarkeit
Compliance Erfüllung, Einhaltung
Component Baustein, Komponente
Concern Belang
Confidentiality Vertraulichkeit
Constraint Randbedingung, Einschränkung
Context (of a term) Einordnung (eines Begriffes) in einen

Zusammenhang
Context view Kontextabgrenzung
Coupling Kopplung, Abhängigkeit
Crosscutting Querschnittlich
Curriculum Lehrplan
Decomposition Zerlegung
Dependency Abhängigkeit, Beziehung
Deployment Verteilung
Deployment unit Verteilungsartefakt
Deployment view Verteilungssicht
Deputy chairman Stellvertretender Vorsitzender
Design Entwurf
Design approach Entwurfsansatz, Entwurfsmethodik
Design decision Entwurfsentscheidung
Design principle Entwurfsprinzip
Domain Fachdomäne, Fachlicher Bereich, Geschäftsbereich
Domain-related architecture fachliche Architektur
Drawing Tool Mal-/Zeichenprogramm
Economicalness Sparsamkeit, Wirtschaftlichkeit
Embedded Eingebettet
Encapsulation Kapselung
Enterprise IT architecture Unternehmens-IT-Architektur
Estimation Schätzung
Evaluation Bewertung
Examination question Prüfungsfrage
Examination rules and regulations Prüfungsordnung
Examination sheet Prüfungsbogen
Examination task Prüfungsaufgabe
Examinee Prüfling
Examiner Prüfer
Executive board Vorstand

Translations 61

English German
Fees rules and regulations Gebührenordnung
General meeting Mitgliederversammlung
Influencing Factor Einflussfaktor
Information hiding principle Geheimnisprinzip
Integrity Integrität
Interdependency (between design decisions) Abhängigkeit (zwischen Entwurfsentscheidungen)
Interface Schnittstelle
Interface description Schnittstellenbeschreibung,

Schnittstellendokumentation
Learning goal Lernziel
License fee Lizenzgebühr
License holder Lizenznehmer
Licensee Lizenznehmer
Licensing agreement Lizenzvertrag, Lizenzvereinbarung
Licensor Lizenzgeber
Local court Amtsgericht
Means for describing Beschreibungsmittel
Means for documenting Beschreibungsmittel
Measurability Messbarkeit
Members’ meeting Mitgliederversammlung
Modeling Tool Modellierungswerkzeug
Module Komponente, Modul, Baustein
Node Knoten
Non-exclusive license Einfache Lizenz
Non-profit Gemmeinnützig
Notification Benachrichtigung
Objective Ziel
Operational processes Betriebsprozesse (von Software)
Pattern Muster
Pattern language Mustersprache, Musterfamilie
Perspective Perspektive
Principle Prinzip, Konzept
Quality attribute Qualitätsmerkmal, Qualitätseigenschaft
Quality characteristic Qualitätsmerkmal, Qualitätseigenschaft
Quality feature Qualitätsmerkmal, Qualitätseigenschaft
Rationale Begründung, Erklärung
Real-time system Echtzeitsystem
Registered trademark Marke (gesetzlich geschützt)
Relationship Beziehung
Relationship (kind of) Beziehungsart
Repository Ablage
Requirement Anforderung
Resolution Beschluss
Responsibility Verantwortlichkeit
Rights of use Nutzungsrecht
Runtime Laufzeit
Runtime view Laufzeitsicht
Security Goals Schutzziele, Sachziele
Skill Fähigkeit, Fertigkeit

Translations 62

English German
Specification (of software architecture) Beschreibung (von Softwarearchitektur)
sponsoring (board) member materiell förderndes Mitglied
statutory satzungsgemäß
Structure Struktur
Task Aufgabe
Team regulations Arbeitsgruppenordnung
Term Begriff
Thriftyness Sparsamkeit, Wirtschaftlichkeit
Tools Arbeitsmittel, Werkzeug
Tools-and-material-approach Werkzeug-Material-Ansatz
Tradeoff Kompromiss, Abwägung
Training provider Schulungsanbieter
Treasurer Schatzmeister
Uses relationship Benutzt-Beziehung, Nutzungsbeziehung
View Sicht
Workflow management Ablaufsteuerung
Working environment Arbeitsumgebung
Working group Arbeitsgruppe
Working group head Arbeitsgruppenleiter

Translations 63

Translations German to English

In this section we collect the iSAQB translation of the terms from German to English.

Please note: This translation table is not supposed to be complete, several English terms will
not be translated but preferably used in their original language (e.g. many of the design pattern
names).

German English
Abhängigkeit Coupling, Dependency
Abhängigkeit (zwischen
Entwurfsentscheidungen)

Interdependency (between design decisions)

Ablage Repository
Ablaufsteuerung Workflow management
Abwägung Tradeoff
Amtsgericht Local court
Anforderung Requirement
Angemessenheit Adequacy, Appropriateness, Commensurability
Angriffsbäume Attack Tree
Anpassung Adaption
Ansatz Approach
Arbeitsgruppe Working group
Arbeitsgruppenleiter Working group head
Arbeitsgruppenordnung Team regulations
Arbeitsmittel Tools
Arbeitsumgebung Working environment
Architekturanalyse Architecture assessment, Architecture

evaluation
Architekturbewertung Architecture assessment, Architecture

evaluation
Architekturmuster Architectural pattern
Architektursicht Architectural view
Architekturziel Architectural objective, Architecture objective
Artefakt Artifact
Aspekt Aspect
Aufgabe Task
Baustein Building block, Component, Module
Bausteinsicht Building block view
Begriff Term
Begründung Rationale
Begutachtung Assessment
Belang Aspect, Concern
Benachrichtigung Notification
Benutzt-Beziehung Uses relationship
Beschluss Resolution
Beschreibung (von Softwarearchitektur) Specification (of software architecture)
Beschreibungsmittel Means for describing, Means for documenting

Translations 64

German English
Betriebsprozesse (von Software) Operational processes
Bewertung Assessment, Evaluation
Beziehung Association, Dependency, Relationship
Beziehungsart Relationship (kind of)
Domäne Business
Echtzeitsystem Real-time system
Einfache Lizenz Non-exclusive license
Einflussfaktor Influencing Factor
Eingebettet Embedded
Einhaltung Compliance
Einordnung (eines Begriffes) in einen
Zusammenhang

Context (of a term)

Einschränkung Constraint
Einschätzung Assessment
Entwurf Design
Entwurfsansatz Design approach
Entwurfsentscheidung Design decision
Entwurfsmethodik Design approach
Entwurfsprinzip Design principle
Erfüllung Compliance
Erklärung Rationale
Fachdomäne Domain
fachliche Architektur Business architecture, Domain-related

architecture
Fachlicher Bereich Domain
Fachlichkeit Business
Fertigkeit Skill
Fähigkeit Skill
Gebührenordnung Fees rules and regulations
Geheimnisprinzip Information hiding principle
Gemmeinnützig Non-profit
Geschäftsarchitektur Business architecture
Geschäftsbereich Domain
innerer Zusammenhalt Cohesion
Integrität Integrity
Kanal Channel
Kapselung Encapsulation
Knoten Node
Kohäsion Cohesion
Komponente Component, Module
Kompromiss Tradeoff
Kontextabgrenzung Context view
Konzept Principle
Kopplung Coupling
Laufzeit Runtime
Laufzeitsicht Runtime view
Lehrplan Curriculum
Lernziel Learning goal
Lizenzgeber Licensor
Lizenzgebühr License fee

Translations 65

German English
Lizenznehmer Licensee, License holder
Lizenzvereinbarung Licensing agreement
Lizenzvertrag Licensing agreement
Mal-/Zeichenprogramm Drawing Tool
Marke (gesetzlich geschützt) Registered trademark
materiell förderndes Mitglied sponsoring (board) member
Messbarkeit Commensurability, Measurability
Mitgliederversammlung General meeting, Members’ meeting
Modellierungswerkzeug Modeling Tool
Modul Module
Muster Pattern
Musterfamilie Pattern language
Mustersprache Pattern language
Nutzungsbeziehung Uses relationship
Nutzungsrecht Rights of use
Perspektive Perspective
Prinzip Principle
Prüfer Examiner
Prüfling Examinee
Prüfungsaufgabe Examination task
Prüfungsbogen Examination sheet
Prüfungsfrage Examination question
Prüfungsordnung Examination rules and regulations
Qualitätseigenschaft Quality attribute, Quality characteristic,

Quality feature
Qualitätsmerkmal Quality attribute, Quality characteristic,

Quality feature
Querschnittlich Crosscutting
Randbedingung Constraint
Rechnungsprüfer Cash auditor
Rechnungsprüfung Cash audit
Sachziele Security Goals
Satzung des Vereins Articles of assocation
satzungsgemäß statutory
Schatzmeister Treasurer
Schnittstelle Interface
Schnittstellenbeschreibung Interface description
Schnittstellendokumentation Interface description
Schrank (als Metapher für Template) Cabinet (as methaphor for template)
Schulungsanbieter Training provider
Schutzziele Security Goals
Schätzung Estimation
Sicht Architectural view, View
Sparsamkeit Economicalness, Thriftyness
Stellvertretender Vorsitzender Deputy chairman
Struktur Structure
Unternehmens-IT-Architektur Enterprise IT architecture
Untersuchung Assessment
Verantwortlichkeit Responsibility

Translations 66

German English
Verein Association
Verfügbarkeit Availability
Vergleichbarkeit Commensurability
Verteilung Deployment
Verteilungsartefakt Deployment unit
Verteilungssicht Deployment view
Vertraulichkeit Confidentiality
Vorsitzender Chairman
Vorstand Executive board
Werkzeug Tools
Werkzeug-Material-Ansatz Tools-and-material-approach
Wirtschaftlichkeit Economicalness, Thriftyness
Zerlegung Decomposition
Zertifizierungsstelle Certification authority, Certification body
Ziel Objective

Categories
We use categories to add structure to the terms in the glossary. Every term might belong to zero
or more of the following categories:

Architecture-Pattern
Name of an architecture pattern or -style from e.g. [Buschmann+96], [Fowler2003], [Hohpe+2003],
[Quian+2010] or other fundamental references.

Communication
Used or needed to communicate information about arbitrary aspects of software architec-
ture.

DDD
Keyword from the CPSA-Advanced curriculum “Domain Driven Design”

Design-Pattern
Name of a design pattern from e.g. [Gamma+95] or other fundamental sources.

Design-Principle
Name of a fundamental design principle.

Foundation
Terms required for or contained in the CPSA-Foundation curriculum.

Fundamental
Fundamental term.

Improve
Keyword from the CPSA-Advanced curriculum “IMPROVE”.

iSAQB
Official iSAQB terms, many of them used for contracts, association and other organizational
stuff.

Metric
Defined measure to what degree a software system (or related process) possesses some
property. Examples: Size (e.g. Lines-of-Code, cyclomatic complexity, coupling, mean-time-
between-failure)

Security
Measures to reach basic principles like confidentiality, integrity, availability and non-
repudation for data in an IT-system.

ISO-IEC-IEEE-42010
ISO/IEC/IEEE 42010:2011 Systems and software engineering Architecture description. Note,
a new version of the standard was expected to be published till the end of 2016.

References and Resources
Anderson-2008

Ross Anderson, Security Engineering - A Guide to Building Dependable Distributed Systems,
2nd edition 2008, John Wiley & Sons.

One of the most comprehensive books about information security available.

Bachmann+2000

Bachmann, Felix/Bass, Len/Carriere, Jeromy/Clements, Paul/Garlan, David/Ivers, James/Nord,
Robert/Little, Reed. Software Architecture Documentation in Practice, Special Report CMU/SEI-
2000-SR-004, 2000.

Bass+2012

Bass, L/Clements, P/Kazman, R.: Software Architecture in Practice

3rd edition, Addison-Wesley, 2012. Although the title suggests otherwise, a quite fundamental
(and sometimes abstract) book. The authors have a strong background in ultra-large scale (often
military) systems - so their advice might sometimes conflicts with small or lean kinds of projects.

Brown-2015

Brown, Simon: Software Architecture For Developers,

https://leanpub.com/software-architecture-for-developers¹⁰⁶ Leanpub Publishing. Very practical
and pragmatic.

Buschmann+1996

Also known as POSA-1.

Buschmann, Frank/Meunier, Regine/Rohnert, Hans/Sommerlad, Peter: A System of Patterns:
Pattern-Oriented Software Architecture 1, 1st edition, 1996, John Wiley & Sons.

Most likely the most famous and groundbreaking book on architecture patterns.

Buschmann+2007

Also known as POSA-4.

Buschmann, Frank/Henney, Kevlin/Schmidt, Douglas C.: Pattern-Oriented Software Architec-
ture: A Pattern Language for Distributed Computing, Volume 4, 2007, John Wiley & Sons.

Describes a pattern language for distributed computing that guides readers through the best
practices and introduce them to key areas of building distributed software systems. The book
connects hundreds of stand-alone patterns, pattern collections, and pattern languages from the
existing body of literature found in the POSA series.
¹⁰⁶https://leanpub.com/software-architecture-for-developers

https://leanpub.com/software-architecture-for-developers
https://leanpub.com/software-architecture-for-developers

References and Resources 69

Buschmann+2007b

Also known as POSA-5.

Buschmann, Frank/Henney, Kevlin/Schmidt, Douglas C.: Pattern-Oriented Software Architec-
ture: On Patterns and Pattern Languages, Volume 5, 2007, John Wiley & Sons.

A meta-explanation, addresses the question of what a pattern language is and compares various
pattern paradigms.

Clements+2002

Clements, Paul/Kazman, Rick/Klein, Mark: Evaluating Software Architectures: Methods and Case
Studies, Addison-Wesley, 2001.

Clements+2010

Clements, Paul/Bachmann, Felix/Bass, Len/Garlan, David/Ivers, James/Little, Reed/Merson, Paulo/Nord,
Robert. Documenting Software Architectures: Views and Beyond, 2nd edition, Addison Wesley,
2010

Evans-2004

Evans, Eric: Domain-Driven Design: Tackling Complexity in the Heart of Software, 1st edition,
Addison-Wesley, 2004.

Ford+2017

Neil Ford, Rebecca Parsons, Patrick Kua: Building Evolutionary Architectures: Support Constant
Change. OReilly 2017

Fowler-2003

Fowler, Martin: Patterns of Enterprise Application Architecture, Addison-Wesley, 2003.

Great support for building information systems.

Gamma+1994

Gamma, Erich/Helm, Richard/Johnson, Ralph/Vlissides, John M. Design Patterns: Elements of
Reusable Object-Oriented Software, 1st edition, 1994, Addison-Wesley, 1994.

A classic on design patterns.

GoF (Gang of Four)

See Gamma+1994

Gorton-2011

Gorton, I. Essential Software Architecture, 2nd edition, Springer, 2011

References and Resources 70

Hargis+2004

Hargis, Gretchen/Carey, Michelle/Hernandez, Ann: Developing Quality Technical Information:
A Handbook for Writers and Editors, IBM Press, 2nd edition, Prentice Hall, 2004.

If you need to write lots of documentation, you should have a look at this book.

Hofmeister+2000

Hofmeister, Christine/Nord, Robert/Soni, Dilip:Applied Software Architecture, 1st edition, Addison-
Wesley, 1999

Hohpe+2003

Hohpe, G/Woolf, B: Enterprise Integration Patterns: Designing, Building, and Deploying Messag-
ing Solutions, Addison Wesley, 2003.

A very important book and timeless book for people creating integrated systems.

Kelly+2009

Steven Kelly and Risto Pohjonen: Worst Practices for Domain-Specific Modeling IEEE Software,
volume 26, No. 4 July/August 2009, p22-30.

Authors explain several bad practices of domain modeling and give advice how and why to avoid
those.

Kruchten-1995

Kruchten, Philippe. The 4+1 View Model of Architecture, IEEE Software, volume 12 (6), pp 45-50,
1995.

Lilienthal-2019

Lilienthal, Carola: Langlebige Software-Architekturen: Technische Schulden analysieren, begren-
zen und abbauen 3rd edition, dpunkt.verlag, 2019

Martin-SOLID

Martin, Robert C: S.O.L.I.D.

S.O.L.I.D is an acronym for the first five object-oriented design(OOD) principles by Robert C.
Martin. Some of the original papers have been moved around onto various locations - see the
following:

• Wikipedia on SOLID¹⁰⁷
• A nice Introduction¹⁰⁸ by Samuel Oloruntoba¹⁰⁹

¹⁰⁷https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
¹⁰⁸https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
¹⁰⁹https://scotch.io/@kayandrae

https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/@kayandrae
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://scotch.io/@kayandrae

References and Resources 71

Martin-2003

Martin, Robert C: Agile Software Development: Principles, Patterns and Practices, Prentice Hall,
2002

McGraw-2006

Garry McGraw, “Software Security - Building Security In”, Addison-Wesley 2006

Covering the whole process of software design from a security perspective by the means of risk
management, code reviews, risk analysis, penetration testing, security testing nad abuse case
development.

Parnas-1972

Parnas, David:On the criteria to be used in decomposing systems into modules”, Communications
of the ACM, volume 15, issue 12, Dec 1972

One of the most influential articles ever written in software engineering, introducing encapsula-
tion and modularity.

POSA-1

Pattern-Oriented Software Architecture, Volume 1. See Buschmann+1996.

POSA-2

Pattern-Oriented Software Architecture, Volume 2. See Schmidt+2000.

POSA-4

Pattern-Oriented Software Architecture, Volume 4. See Buschmann+2007.

POSA-5

Pattern-Oriented Software Architecture, Volume 5. See Buschmann+2007b.

Quian+2010

Qian, K/Fu, X/Tao, L/Xu, C/Herrera, J: Software Architecture and Design Illuminated, 1st edition,
Jones and Bartlett, 2010.

Well-structure and readable collection of architecture styles and patterns.

Rozanski+2011

Rozanski, Nick/Woods, Eoin: Software Systems Architecture - Working with Stakeholders Using
Viewpoints and Perspectives, 2nd Edition, Addison Wesley 2011.

Presents a set of architectural viewpoints and perspectives.

References and Resources 72

RMIAS-2013

Yulia Cherdantseva, Jeremy Hilton, A Reference Model of Information Assurance & Security,
2013 Eight International Conference on Availability, Reliability and Security (ARES), DOI:
10.1109/ARES.2013.72 , http://users.cs.cf.ac.uk/Y.V.Cherdantseva/RMIAS.pdf

Conference Paper of Yulia Cherdantseva and Jeremy Hilton describing the RMIAS.

Schmidt+2000

Also known as POSA-2.

Schmidt, Douglas C/Stal, Michael/Rohnert, Hans/Buschmann, Frank. Pattern-Oriented Software
Architecture, volume 2: Patterns for Concurrent and Networked Objects,Wiley & Sons, 2000

Schneier-1996

Bruce Schneier, Applied Cryptography, 2nd Edition 1996, John Wiley & Sons

Comprehensive suervey of modern cryptography.

Shaw+1996

Shaw, Mary/Garlan, David: Software Architecture: Perspectives on an Emerging Discipline, Pren-
tice Hall, 1996

Starke-2018

Starke, Gernot: Effective Software Architectures: iSAQB CPSA-Foundation© Certification Study
Guide Leanpub, 2018. Available online https://leanpub.com/esa42¹¹⁰.

A study guide for the CPSA-Foundation examination.

Tanenbaum+2016

Andrew Tanenbaum, Maarten van Steen: Distributed Systems, Principles and Paradigms. https:
//www.distributed-systems.net/

Tornhill-2015

Adam Tornhill: Your Code as a Crime Scene. Use Forensic Techniques to Arrest Defects, Bottle-
necks, and BadDesign in Your Programs. Pragmatic Programmers, 2015. https://www.adamtornhill.
com

¹¹⁰https://leanpub.com/esa42

https://leanpub.com/esa42
https://www.distributed-systems.net/
https://www.distributed-systems.net/
https://www.adamtornhill.com
https://www.adamtornhill.com
https://leanpub.com/esa42

Appendix A: The iSAQB e.V.
Association

The International Software Architecture Qualification Board (iSAQB e.V.,
http://isaqb.org) is a non-profit organization with members from indus-
try, development and consulting firms, education, academia and other
organizations.

It is established as an association (e.V.) according to German law with the following objectives:

• Creating and maintaining consistent curricula for software architects.
• Defining certification examinations based upon the various CPSA curricula
• Ensuring high quality of teaching for software architects
• Ensuring a high quality of its software architecture certifications

iSAQB defines and prescribes training and examination regulations, but does not carry out
any training or examinations itself. iSAQB trainings are carried out by (licensed) training and
examination organizations.

iSAQB monitors and audits the quality of these trainings and all associated processes (e.g.
certification procedures).

Appendix B: About the Authors
Gernot Starke

Dr. Gernot Starke (INNOQ¹¹¹ Fellow) is co-founder and avid user of the (open source) arc42¹¹²
documentation template. For more than 20 years he works as software architect, coach and
consultant, conquering the challenges of creating effective software architectures for clients from
various industries.

In 2008 Gernot co-founded the International Software Architecture Qualification Board (iSAQB
e.V.¹¹³) and since then supports it as an active member.

Gernot has authored several (German) books on software architecture and related topics and
initiated this glossary.

He lives in Cologne with his wife (Cheffe Uli).

Ulrich Becker

Ulrich Beckerworks as principal consultant atMethod Park¹¹⁴, focussing on software architecture
and application lifecycle management.

Ulrich studied computer science at the University of Hamburg and the University of Erlangen-
Nürnberg. He received his PhD from the University of Erlangen-Nürnberg in 2003 for his work
on model-based distribution configuration. He then became group leader for the adaptive system
software group at Fraunhofer IIS¹¹⁵.

Since 2005 Ulrich works as a trainer, consultant and coach at Method Park where he supports his
clients in improving their development processes and methods. Most of his clients are from the
automotive industry or other heavily regulated industries.

Ulrich is a founding member of iSAQB e.V.¹¹⁶ where he contributes to the foundation level and
advanced level working groups. He lives in Erlangen with his family.

Matthias Bohlen

Matthias Bohlen, independent expert¹¹⁷ for effective product development, started his career
as a software developer in 1980. He wrote compilers for the MC68020 processor by Motorola
which was quite a revolutionary device in those days where there was no IBM PC, yet. And the
compilers really sold well.

¹¹¹https://innoq.com
¹¹²https://arc42.org
¹¹³https://isaqb.org
¹¹⁴http://www.methodpark.de
¹¹⁵http://www.iis.fraunhofer.de/
¹¹⁶http://isaqb.org
¹¹⁷http://mbohlen.de

https://innoq.com/
https://arc42.org/
https://isaqb.org/
https://isaqb.org/
http://www.methodpark.de/
http://www.iis.fraunhofer.de/
http://isaqb.org/
http://mbohlen.de/
https://innoq.com/
https://arc42.org/
https://isaqb.org/
http://www.methodpark.de/
http://www.iis.fraunhofer.de/
http://isaqb.org/
http://mbohlen.de/

Appendix B: About the Authors 75

Since then, Matthias has worked with countless software teams, helping them to get working
software out the door without losing their mind. This is what he still does today.

Matthias is an active member of the International Software Architecture Qualification Board¹¹⁸,
writes a blog¹¹⁹, is being known in the Lean/Agile field, and speaks at conferences for software
development.

Phillip Ghadir

Member of the board of INNOQ Deutschland GmbH. Since many years, Phillip consults clients
from various industries in topics around software-architecture, technology and development. He
co-founded the iSAQB and regularly conducts trainings on software architecture.

Carola Lilienthal

Dr. Carola Lilienthal is software architect at and co-founder of the WPS Workplace-Solutions¹²⁰.
For 20 years she has been working as a developer, project manager, coach, consultant and
architect. Carola was an early adopter of Domain-Driven Design and agile movement and has
successfully worked for numerous clients from various domains, mainly finance, insurance and
logistics.

Since 2003, she has been analyzing software systems in Java, C++, C#, PHP, ABAP and gives
advice to development teams how to improve the sustainability of their code. Carola speaks
regularly on conferences and has written various articles as well as a book on sustainable
software architecture.

Since 2008 Carola has been supporting the International Software Architecture Qualification
Board (iSAQB e.V.¹²¹) as an active member.

Mahbouba Gharbi

Mahbouba Gharbi is CIO of iTech Progress, book author and conference speaker.

Several years ago Mahbouba became president of the iSAQB. She lives in Mannheim with her
family.

Mirko Hillert

Mirko is chairman and CEO of the iSAQB GmbH, the commercial branch of the iSAQB associ-
ation. He contributed the majority of the more formal terms, concerning accreditation and the
like.
¹¹⁸http://www.isaqb.org
¹¹⁹http://mbohlen.de
¹²⁰https://wps.de
¹²¹http://isaqb.org

http://www.isaqb.org/
http://mbohlen.de/
https://wps.de/
http://isaqb.org/
http://www.isaqb.org/
http://mbohlen.de/
https://wps.de/
http://isaqb.org/

Appendix B: About the Authors 76

Simon Kölsch

Simon Kölsch works as a senior consultant at INNOQ with a focus on web architecture and
security.

Simon is enthusiastic about solutions beyond the classical monolithic enterprise application,
covering the architecture of distributed systems and their infrastructure, logging and monitoring.

He is not committed to one specific technology or programming language, but has a strong JVM
background.

Alexander Lorz

Dr.-Ing. Alexander Lorz is a freelance software architecture trainer, IT consultant and developer.
His first contact with IT systems dates back to the mid-1980s, and since then he has refused to
give up his fascination for the science and craftsmanship of developing complex systems.

As an active member of the International Software Architecture Qualification Board (iSAQB
e.V.¹²²) and the Foundation Level Working Group he contributes to the evolution of the founda-
tion curriculum.

Michael Mahlberg

Michael Mahlberg runs his own method consultancy¹²³ in Germany and spends most of his time
supporting clients in their quest for more effective ways to work. Mostly by applying lean and
agile concepts.

Running his own computer and software related companies since he was 18, he quickly came to
realize that software architecture and (development) processes are in a way timeless aspects of
the craft.

Nowadays a lot of his work focuses on processes and human interactions – a field in which he
engages both professionally as well as pro bono (for example he is one of the people who started
and run the Limited WIP Society Cologne¹²⁴).

Michael’s architectural work therefore tends to be dealing with the impact(s) and implications
of architectural and process decisions on each other and the relative optimization strategies.

Andreas Rausch

Prof. Dr. Andreas Rausch is head of the chair for Software Systems Engineering at Clausthal
University of Technology.

He received his doctorate in 2001 at the Technical University of Munich, at the chair of Prof.
Dr. Manfred Broy. His main research interests in the field of software systems engineering are
software architectures, model-based software development and processmodels. He has published
more than 70 international papers in these areas.

¹²²http://isaqb.org
¹²³http://consulting-guild.de
¹²⁴http://lwscologne.de

http://isaqb.org/
http://isaqb.org/
http://consulting-guild.de/
http://lwscologne.de/
http://isaqb.org/
http://consulting-guild.de/
http://lwscologne.de/

Appendix B: About the Authors 77

Roger Rhoades

Roger Rhoades is founder of Albion¹²⁵, a training and consulting company in Germany.

Roger has over 25 years of practical experience in the field of enterprise, business, and software
architecture as well as management of international teams and projects. This practical experience
is integrated into his training courses to ensure that class participants not only understand the
theoretical content, but also the real-world challenges of its implementation.

Since 2012, Roger regularly presents at international conferences (e.g. EAMKon, Lean42 EAM,
IT Strategy and Governance).

Since 2014, Roger has been an active member of the International Software Architecture Qualifi-
cation Board (iSAQB e.V.¹²⁶). He actively supports the evolution of the foundation and advanced
curricula, exam questions, and case studies in addition to the iSAQB glossary.

Sebastian Fichtner

Founder of flowtoolz.com¹²⁷. App engineer and consultant. Started coding in 1995. Passionate
about architecture ever since. Does original apps, open source and projects for various clients.
Loves Apple platforms and the language Swift.

¹²⁵https://albionacademy.de
¹²⁶http://isaqb.org
¹²⁷https://www.flowtoolz.com

https://albionacademy.de/
http://isaqb.org/
https://www.flowtoolz.com/
https://albionacademy.de/
http://isaqb.org/
https://www.flowtoolz.com/

Appendix C: About our Cause

All royalties of this book are donated to the EFF. By paying for this book, you support their cause:

“The Electronic Frontier Foundation is the leading nonprofit organization defending civil
liberties in the digital world. Founded in 1990, EFF champions user privacy, free expression,
and innovation through impact litigation, policy analysis, grassroots activism, and technology
development. We work to ensure that rights and freedoms are enhanced and protected as our
use of technology grows.

Even in the fledgling days of the Internet, EFF understood that protecting access to developing
technology was central to advancing freedom for all. In the years that followed, EFF used
our fiercely independent voice to clear the way for open source software, encryption, security
research, file sharing tools, and a world of emerging technologies.

Today, EFF uses the unique expertise of leading technologists, activists, and attorneys in our
efforts to defend free speech online, fight illegal surveillance, advocate for users and innovators,
and support freedom-enhancing technologies.

Together, we forged a vast network of concerned members and partner organizations spanning
the globe. EFF advises policymakers and educates the press and the public through compre-
hensive analysis, educational guides, activist workshops, and more. EFF empowers hundreds
of thousands of individuals through our Action Center and has become a leading voice in online
rights debates.

EFF is a donor-funded US 501(c)(3) nonprofit organization that depends on your support to
continue fighting for users.”

(Quote from eff.org/about¹²⁸)

¹²⁸http://eff.org/about

http://eff.org/about
http://eff.org/about

	Table of Contents
	Introduction
	Personal Comments
	Terms Can Be Referenced
	License
	Acknowledgements
	Contributing

	Glossary of Terms
	Translations
	Translations English to German
	Translations German to English

	Categories
	References and Resources
	Appendix A: The iSAQB e.V. Association
	Appendix B: About the Authors
	Appendix C: About our Cause

