

Peter Hruschka

Kim Lauenroth

Markus Meuten

Gareth Rogers

Stefan Gärtner

Hans-Jörg Steffe

Handbook

RE@Agile

Education and Training

for

IREB Certified Professional for Requirements Engineering

Advanced Level RE@Agile

Practitioner | Specialist

Version 2.0.0

July 2022

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 2 / 101

Terms of Use

This Handbook, including all of its parts, is protected by copyright law. With the consent of the copyright
owners and following copyright law, the use of the Handbook is permitted—unless explicitly mentioned
it is not permitted. This applies in particular to reproductions, adaptations, translations, microfilming,
storage and processing in electronic systems, and public disclosure.

Training providers may use this Handbook as a basis for seminars and training provided that the
copyright holder is acknowledged and the source and owner of the copyright is mentioned. In addition,
with the prior consent of IREB, this Handbook may be used for advertising purposes.

Any individual or group of individuals may use this Handbook as a basis for study, articles, books or
other derived publications provided that the copyright holder is acknowledged and the source and
owner of the copyright is mentioned.

Acknowledgements

This handbook was initially created in 2018 by Bernd Aschauer, Peter Hruschka, Kim Lauenroth, Markus
Meuten, Gareth Rogers.

Our thanks to Rainer Grau for his intensive reviews of the RE@Agile syllabus, to all reviewers of this
document as well as Stefan Sturm, Sibylle Becker and Ruth Rossi for their encouragement and support.
Review comments were provided by Sacha Reis and Sven van der Zee. Proofreading by Michiel van der
Voort.

Approved for release on February 18, 2022, by the IREB Council upon recommendation of Xavier
Franch.

We thank everybody for their involvement.

Copyright © 2017-2022 for this Handbook is with the authors listed above. The rights have been
transferred to the IREB International Requirements Engineering Board e.V.

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 3 / 101

Table of Contents

Terms of Use .. 2

Acknowledgements .. 2

Table of Contents ... 3

Foreword .. 6

Version History .. 7

1. What is RE@Agile ... 8

1.1 History of Requirements Engineering and Agility .. 8

1.2 Learning from each other .. 11

1.3 RE@Agile – A Definition .. 13

2. A Clean Project Start .. 15

2.1 Visions and Goals .. 15

2.1.1 Fundamentals ... 15

2.1.2 Techniques for Vision/Goal Specification .. 17

2.1.3 Changing Vision and/or Goals ... 21

2.1.4 Specifying the System Boundary Fundamentals ... 21

2.1.5 Documentation of the System Boundary .. 24

2.1.6 The Inevitability of a Changing Scope .. 28

2.2 Stakeholder Identification and Management .. 28

2.2.1 Fundamentals ... 28

2.2.2 Identification of Stakeholders ... 29

2.2.3 Management of Stakeholders .. 31

2.2.4 Sources for Requirements beyond Stakeholder .. 32

2.3 Summary .. 32

2.4 Case Study and Exercises .. 33

3. Handling Functional Requirements .. 35

3.1 Different Levels of Requirements Granularity ... 35

3.2 Communicating and Documenting on Different Levels .. 37

3.3 Working with User Stories .. 41

3.3.1 The 3 C model ... 41

3.3.2 A template for user stories: .. 42

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 4 / 101

3.3.3 INVEST: Criteria for “good” stories ... 43

3.3.4 Supplementing stories with other requirements artifacts .. 43

3.4 Splitting and Grouping Techniques ... 44

3.5 Knowing When to Stop ... 46

3.6 Project and Product Documentation of Requirements ... 47

3.7 Summary .. 49

4. Handling Quality Requirements and Constraints.. 50

4.1 Understanding the Importance of Quality Requirements and Constraints 51

4.2 Adding Precision to Quality Requirements .. 53

4.3 Quality Requirements and Backlog ... 57

4.4 Making Constraints Explicit ... 57

4.5 Summary .. 59

5. Prioritizing and Estimating Requirements .. 61

5.1 Determination of Business Value ... 61

5.2 Business Value, Risk .. 63

5.3 Expressing Priorities and Ordering the Backlog ... 64

5.4 Estimating User Stories and other Backlog Items ... 68

5.5 Choosing a Development Strategy ... 72

5.6 Summary .. 76

6. Scaling RE@Agile .. 77

6.1 Scaling Requirements and Teams .. 77

6.1.1 Organizing large scale requirements .. 79

6.1.2 Organizing Teams ... 80

6.1.3 Organizing Lifecycles/Iterations .. 82

6.2 Criteria for structuring Requirements and Teams in the Large .. 83

6.2.1 Product-focused backlog ... 83

6.2.2 Self-organizing teams and collaborative decision-making ... 84

6.2.3 Understanding feature-based requirements splitting .. 85

6.2.4 Considerations when feature-based requirements splitting is not possible 86

6.2.5 Telecoms company example .. 87

6.3 Roadmaps and Large Scale Planning .. 90

6.3.1 Representing roadmaps ... 91

6.3.2 Synchronizing teams with roadmaps ... 94

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 5 / 101

6.3.3 Developing roadmaps ... 95

6.3.4 Validating roadmaps ... 96

6.4 Product Validation ... 96

List of Abbreviations .. 98

References .. 99

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 6 / 101

Foreword

This Handbook complements the syllabus of the CPRE Advanced Level RE@Agile.

This Handbook is intended for training providers who want to offer seminars or training on RE@Agile
Practitioner and/or Specialist according to the IREB standard. It is also aimed at training participants
and interested parties who want to get a detailed insight into the content of this advanced level module.
It can also be used when applying Requirements Engineering methods in an agile environment
according to the IREB standard.

This Handbook is not a substitute for training on the topic. The Handbook represents a link between the
Syllabus (which lists and explains the learning objectives of the module) and the broad range of
literature that has been published on the topic.

The contents of this Handbook, together with references to more detailed literature, support training
providers in preparing training participants for the certification exam. This Handbook provides training
participants and interested parties an opportunity to deepen their knowledge of Requirements
Engineering in an agile environment and to supplement the detailed content based on the literature
recommendations. In addition, this Handbook can be used to refresh existing knowledge about the
various topics of RE@Agile, for instance after having received the RE@Agile Practitioner or the
RE@Agile Specialist certificate.

Suggestions for improvements and corrections are always welcome!

E-mail contact: info@ireb.org

We hope that you enjoy studying this Handbook and that you will successfully pass the certification
exam for the IREB Certified Professional for Requirements Engineering Advanced Level RE@Agile
- Practitioner - or the IREB Certified Professional for Requirements Engineering Advanced Level
RE@Agile - Specialist.

More information on the IREB Certified Professional for Requirements Engineering Advanced Level
module RE@Agile can be found at: http://www.ireb.org.

Stefan Gärtner

Peter Hruschka

Kim Lauenroth

Markus Meuten

Gareth Rogers

Hans-Jörg Steffe

mailto:info@ireb.org
http://www.ireb.org/

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 7 / 101

Version History

Version Date Comment Author

1.0.0 October 10, 2018 Initial Version Bernd Aschauer,
Peter Hruschka,
Kim Lauenroth,
Markus Meuten
and Gareth Rogers

1.0.1 September 11, 2019 Minor improvements (typos,
formatting, a few inconsistencies
removed) in the context of the
translation to German.

Markus Meuten
Hans-Jörg Steffe
Ruth Rossi

1.0.2 December 17, 2019 Consistent usage of the term
refinement meeting and product
backlog refinement.

Hans-Jörg Steffe

2.0.0 July 1, 2022 Complete reorganization of the chapter
6; Consistent design of the Figures; Bug
fixing in chapter 1-5 (e.g. replaced
“minimal” with “minimum” in
minimum viable product and minimum
marketable product, replaced
“development team” with
“developers”); inclusion of the
Advanced Level split in Practitioner
and Specialist

Peter Hruschka,
Kim Lauenroth,
Markus Meuten,
Gareth Rogers,
Stefan Gärtner,
Hans-Jörg Steffe

 What is RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 8 / 101

1. What is RE@Agile

Good Requirements Engineering is a recognized success factor for product or system development,
regardless of the development methodology applied.

In this chapter you will get an understanding of the background and history of Requirements
Engineering and of the background and history of agile approaches (chapter 1.1). You will learn why
sometimes these two disciplines are considered to be incompatible – which is a popular misconception.
You will learn that – despite their history – techniques and methods from the Requirements Engineering
discipline are being used (without a clear reference to its origin) in specific development approaches
(like Waterfall and Scrum). You will also learn that agile approaches (like Scrum, Lean Development and
Kanban) need good requirements practices to deliver successful products and systems.

In chapter 1.2 we will discuss the strengths and weaknesses of Requirements Engineering methods and
of agile approaches. While Requirements Engineering emphasizes the importance of eliciting,
understanding and documenting key stakeholders’ requirements in order not to build the wrong
product or system, most agile approaches emphasize the importance of trustful cooperation among the
stakeholders. In agile, frequent feedback loops based on visible results are used to avoid wrong
assumptions being made or periods of misunderstanding lasting too long.

IREB developed the advanced module RE@Agile to combine the strengths of both disciplines. As you
can guess: the goals of Requirements Engineering AND agile approaches are not in conflict, but they
rather complement each another – if applied correctly!

The final chapter 1.3 introduces IREB’s definition of RE@Agile. In a nutshell you will learn how your
development projects can benefit from this integrated approach.

1.1 History of Requirements Engineering and Agility

Based on their respective histories, Requirements Engineering and agile approaches are often
considered separately rather than together. Let us consider some key milestones in these histories to
better understand how this situation arose. These milestones are captured in overview in Figure 1. (note
that they were chosen by the authors of this Handbook to emphasize important sources for the advanced
level module. We do not claim to have captured the complete history of development methods).

In the late 1970s the term “software crisis” resounded throughout the IT-community. The most
important complaint: Product development is a complex process and often the products do not satisfy
the users. The answer of scientists and methodologists was the waterfall model (originally suggested by
Winston Royce, but made popular by Barry Boehm). One of its remedies for the software crisis was to
introduce a “Requirements Phase” before designing, building and testing systems. Its goal was to reach
agreement among important stakeholders on what the product was intended to do before building it.

Requirements specifications at that time were mostly documents with natural language. Around the
same time (mid to end 1970s) many suggestions were made to use graphical models in addition to text
with the aim to improve the precision of requirements and to avoid inconsistencies. In 1975 Peter Chen
suggested Entity-Relationship models to capture business relevant data. In 1978/1979 Douglas Ross
and Tom DeMarco introduced Structured Analysis and Design Technique (SADT) to capture business
functionality.

In the mid 1980s Barry Boehm formulated the “Spiral Model”. Requirements Engineering became an
iterative technique, while introducing risk management and more frequent feedback cycles.

From a method and notation point of view, 1992 was an important milestone for Requirements
Engineering: Ivar Jacobson proposed a “Use Case Driven Approach”. The ideas of emphasizing “actors”
(or users) in the context of the system, and of thinking end-to-end across the whole product, were not
new.

 What is RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 9 / 101

McMenamin/Palmer (in 1984) and Hammer/Champy, in their “Business Process Reengineering”
Methodology, also emphasized this sort of process thinking. But the notation of Ivar Jacobson – simple
stick figures and ellipses, supported by natural language descriptions of these use cases – became very
popular.

Another important milestone for Requirements Engineering was the Unified Process of Ivar Jacobson –
made popular as the “Rational Unified Process” (RUP). RUP recognizes Requirements Engineering as a
“discipline” instead of a “phase”. This discipline spans all of the phases (with varying degrees of
emphasis).

All modern process models have adopted this distinction between disciplines (like business analysis,
requirements, design, implementation, testing) and phases (like inception, elaboration, construction,
transition – in the RUP-terminology). The latter allow for manageable milestones, while the former
ensure that appropriate techniques and practices are established for ongoing work.

The international standardization of UML (Unified Modeling Language) in 1997 by the OMG (Object
Management Group) helped to make requirements specifications using use case models, activity
diagrams, state charts and so on more popular, especially since many tools supported these notations.

Thinking in terms of end-to-end business processes was further enhanced by the standardization of the
BPMN (Business Process Model and Notation). While Ivar Jacobson’s use cases were often
misinterpreted to be “just the IT part of the business processes”, BPMN models are closer to the
“business”. This addressed one important RE-issue: the alignment of business and IT.

Another important aspect of Requirements Engineering has been discussed as early as 1986 with HP’s
introduction of FURPS: the importance of quality requirements. FURPS (Functionality, Usability,
Reliability, Performance and Supportability) was one of the first approaches to emphasize quality
aspects in addition to functionality.

This was refined by the ISO/IEC standard 9126, which established many additional categories of
qualities to be achieved by systems. The latest revision of this standard is the ISO/IEC standard 25010
(also known as SQuaRE – Systems and Software Quality Requirements and Evaluation), in which the
importance of security in modern systems is emphasized.

 What is RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 10 / 101

Figure 1: Selected milestones in RE and Agile

Some key ideas of agile approaches were published long before the Agile Manifesto appeared in 2001.

Tom DeMarco and Tim Lister coined the term “Peopleware” in 1987 to emphasize the importance of
human cooperation and teams.

Toyota published success stories involving Kanban and Lean Manufacturing (or Lean Production) in the
late 1980s. Both concepts (Kanban and Lean) are core ideas in today’s agile methods.

Scrum, a “framework for developing and sustaining complex products”, was first published by Mike
Beedle and Ken Schwaber in 1995. It introduces the role of a “Product Owner”, responsible for the
product’s success within an organization. The Product Owner1 sets the priorities of requirements (often
called epics or stories). Partly due to its simplicity (3 roles, 4 artifacts, 5 meetings), Scrum became very
popular around the world.

In 2001 a group of 17 individuals representing popular approaches like Extreme Programming, Scrum,
DSDM, Adaptive Software Development, Crystal, Feature-Driven Development and Pragmatic
Programming met in Utah and agreed on a “manifesto”. The Agile Manifesto, as it became known, shifted
the emphasis of system development from contracts, documents and long-term planning and processes
to cooperation, openness to change and feedback based on frequent releases.

1 For the sake of brevity, we will use the role name “product owner” in this Handbook, whenever we refer to a
person responsible for managing the requirements. For a definition see the glossary.

 What is RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 11 / 101

In the same year Ron Jeffries – one of the signees of the Agile Manifesto– published the 3C model (Card,
Conversation, Confirmation), to distinguish “social“ user stories from “documentary“ requirements
practices such as use cases.

A few years later Mike Cohn suggested a format for these cards: user stories. User stories emphasize
three important issues: Who wants what why. (As a <type of user> I want <some goal> so that <some
reason>).

Since Scrum was mainly developed for smaller teams (up to ten people), more and more scaling
frameworks (for example SAFe, LeSS, DAD…) were published from 2010 onwards, suggesting ways of
cooperating in larger or distributed teams.

Dean Leffingwell [Leffingwell2010] coined the term “Agile Software Requirements” by publishing a
book in 2011 with this title, which lead to the term “Agile Requirements Engineering”. Although this
term became popular for performing Requirements Engineering tasks according to the principles of the
Agile Manifesto, there is a danger that it may lead to the misunderstanding that there are two ways of
Requirements Engineering: classical Requirements Engineering and Agile Requirements Engineering.
IREB’s view is that there is only good or bad Requirements Engineering - in a non-agile or agile world.
Therefore, we call the IREB approach RE@Agile.

1.2 Learning from each other

Agile and Requirements Engineering are two disciplines with different origins and distinct goals that
can nevertheless learn a lot from each another.

Let us start with some key Requirements Engineering ideas and see how they can benefit from the agile
mindset. After that we will look at some basic agile principles and discuss how Requirements
Engineering techniques can further improve them.

IREB defines Requirements Engineering as a systematic and disciplined approach to the system
specification with the following goals:

1. Knowing the relevant requirements, achieving consensus among the stakeholders about these
requirements, documenting them according to given standards, and managing them
systematically;

2. Understanding and documenting the stakeholder’s desires and needs;

3. Specifying and managing requirements, to minimize the risk of delivering a system that does not
meet the stakeholders’ desires and needs.

The first point – knowing relevant requirements before plunging into a solution – is undisputed. But
agility is very explicit about how “relevant” should be interpreted: just in time! Not all requirements are
relevant at the beginning of an endeavor. A vision statement or a set of goals are sufficient to get started.
Before parts of the solution are developed a thorough understanding of this subset of requirements is
necessary. Others – that are not so urgent for the business – can be left more vague and can be refined
later.

A goal of Requirements Engineering is to achieve consensus among stakeholders. Who could challenge
this goal? Agility suggests achieving the consensus by intensive, trustful collaboration: intensive
discussions about requirements should take place until all stakeholders share the feeling that they are
well understood. Another agile mechanism to achieve consensus among the stakeholders, is quick
feedback through demonstrable product increments. In many environments seeing a (partial) product
increment and being able to use it, is more successful in finding open issues than creating large volumes
of precise documents that are often not read.

 What is RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 12 / 101

Requirements Engineering strives to document stakeholder’s desires and needs. Agility warns us that
we should not produce documents for the sake of producing documents. Documenting requirements (in
an adequate form for the stakeholders) should either (1) support the process of achieving consensus or
(2) satisfy externally imposed constraints (for instance legal constraints or traceability requirements)
or (3) make life easier for defining requirements for the next release without being forced to start from
scratch.

The last goal in the definition of Requirements Engineering is managing requirements, to minimize the
risk of delivering a system that does not meet the stakeholders’ desires and needs. To achieve this, agility
suggests constantly checking the priority and estimates of backlog items (the requirements).

The principles of agility help to refocus Requirements Engineering in terms of its efficiency, flexibility
and collaborative nature. Conversely, there are many insights of Requirements Engineering from which
agile approaches can also benefit.

Agility strongly encourages trustful collaboration and communication among all relevant stakeholders.
In many agile methods this usually means frequent and open verbal communication between clients
and users on one side (those that have needs or requirements) and developers on the other (those that
can provide solutions to the needs and requirements).

While trustful communication is an excellent way to achieve a joint understanding of requirements, this
is by far not the only way to elicit requirements. Requirements Engineering has developed an extensive
body of knowledge on elicitation techniques (for example [RoRo2013]) suitable for use in different
environments and under particular constraints. For example: creativity techniques, such as
brainstorming, help to create product backlog items quickly in innovative projects; product archeology
can create quicker results when working on new versions of existing products; questionnaires may help
to get feedback quickly from a large number of widely dispersed stakeholders that you would never get
into one meeting room.

Agile Product Owners can benefit greatly from having a range of such elicitation techniques at their
disposal and picking a suitable subset that helps to fill the product backlog more quickly than “just
talking”.

By focusing on trustful communication agile approaches often downplay the importance of precise
documentation. User story approaches, in particular, emphasize that the cards to denote stories are
principally a reminder of the discussion, and not a replacement for exact requirements (also see chapter
3.3). We agree that plain natural language (in contrast to more formal requirements notations) is often
an adequate way to understand each other. However natural language is sometimes not precise enough
to avoid misinterpretation. Many other requirements notations have been developed over the last
decades – including many graphical notations – that allow stakeholders to overcome the lack of
precision of natural language. Some business processes might be more easily discussed using activity
diagrams, data-flow diagrams or Business Process Model and Notation (BPMN) than by writing cards
for the steps of the process. Some objects to be dealt with are sometimes more easily sketched using
information models, and some state-driven systems could benefit from state models to clarify which
activities should be performed in which state. Once again, Product Owners and developers should know
such notations – not for the sake of applying a formalism, but rather for shortening discussions.

Another agile credo is delivering working software frequently, that is working iteratively and creating
a series of product increments. It does not, however, make sense to start with iterative development if
the team is not aligned on a vision or a set of goals. For a single Scrum Product Owner in full command
of a product it may be easy to have a vision or set of goals. If, however, the Product Owner has to
coordinate with a number of “important” stakeholders, then stakeholder analysis, goal alignment and
scope definition should precede any detailed requirements work. These activities are included within
the idea of a “clean project start” introduced in chapter 2.

 What is RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 13 / 101

Summarizing the thoughts of this chapter: agility helps us to create a culture for successful product
development and helps Requirements Engineering become more flexible, efficient and collaborative.
From a requirements point of view the cornerstones of agility are trustful cooperation of all
stakeholders and striving for short term incremental results. While techniques such as user stories
sketched on story cards work well, there are many other elicitation and validation techniques,
developed over decades of Requirements Engineering research, that can make Product Owners and
their developments teams even more productive – if, of course, applied correctly and without formalistic
exaggeration.

In the RE@Agile Primer [Primer2017] we concluded: “The most important value is shared by
Requirements Engineering and agile, and that is to make the end user of the product happy because the
solution fits their needs or cures their greatest pains.”

In this Advanced Level Module we will go into detail to show how ideas from both worlds can be used
together to achieve this goal. In the following definition of RE@Agile we first find it helpful to set out
our own guiding principles for the rest of this Handbook.

1.3 RE@Agile – A Definition

RE@Agile is a cooperative, iterative and incremental approach with four goals:

1. Knowing the relevant requirements at an appropriate level of detail (at any time during system
development);

2. Achieving sufficient agreement about the requirements among the relevant stakeholders;

3. Capturing (and documenting) the requirements according to the constraints of the organization;

4. Performing all requirements-related activities according to the principles of the Agile Manifesto.

As mentioned above we will use the Scrum terminology of a Product Owner as the role that is
responsible for the cooperative approach and therefore as the role responsible for good Requirements
Engineering.

Let us explore the key ideas of this definition in detail:

1. RE@Agile is a cooperative approach:
“Cooperative” emphasizes the agile idea of intensive stakeholder interaction by frequently
inspecting the product, providing feedback on it and adapting and clarifying the requirements
as by working together everyone can learn and achieve more.

2. RE@Agile is an iterative process:
This suggests the idea of “just in time”-requirements. Requirements do not have to be
complete before starting technical design and implementation. Stakeholders can iteratively
define (and refine) those requirements that should be implemented soon at the appropriate
level of detail.

3. RE@Agile is an incremental process:
Implementation of those requirements that are considered to deliver highest business value or
reduce the highest risks form the first increment. Early increments strive to create a minimum
viable product (MVP) or a minimum marketable product (MMP). From then on, the next
increments can be added to that product, constantly picking the ones that promise the highest
business value, thus constantly increasing the business value of the resulting product.

The first goal (“relevant requirements known at the appropriate level of detail”) again refers to the
iterative approach: “relevant” are those requirements that should be implemented soon. And those have
to be understood very precisely (including their acceptance criteria) – especially by the developers.

 What is RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 14 / 101

They have to conform to the “definition of ready” (DoR). Other requirements – that are not highest
priority yet – can be kept at a higher abstraction level – only to be detailed further as soon as they
become more important.

The prerequisite for the second goal (“sufficient agreement among relevant stakeholders”) is to know
all stakeholders and their relevance for the system being developed. The person responsible for
requirements (usually the Product Owner) has to negotiate the requirements with those relevant
stakeholders to determine the order of their implementation.

Agile approaches value intensive and ongoing communication about requirements over communication
about documentation. Nevertheless, the third goal emphasizes the importance of documentation at an
appropriate level of detail (which differs from situation to situation). Organizations may have to keep
documentation about requirements (for instance for legal purposes, traceability or maintenance). In
these cases, agile approaches have to ensure that the appropriate documentation was produced.
However, it does not have to be created upfront. It might save time and effort to create the
documentation in parallel to the implementation, or even after the implementation. It might also be
useful to create some artifacts like data models, activity models or state models as temporary
documentation to support the discussion about requirements.

Requirements management summarizes all activities to be done once you have existing requirements
and requirements related artifacts. In agile most requirements management activities are included in
the constant refinement process of the backlog items. But classical requirement management also
includes attribution of requirements, version management, configuration management as well as
traceability among requirements and traceability to other development artifacts. RE@Agile suggests to
minimize these efforts or to balance efforts and benefits:

 Extensive version management can be replaced by quick iterations leading to product

increments (for instance the change-history of requirements since they were first encountered

is less interesting than their current valid state);

 Configuration management (base lining) is included in the iterative determination of sprint

backlogs, i.e., grouping those requirements that currently promises the highest business value.

Therefore, some of the time (and paper-) consuming requirements management activities of non-agile
approaches are substituted by activities based on agile principles. And some others are well supported
by tools that help to automatically keep track of relationships between requirements and about history
without additional human effort.

The next chapters of this Handbook will discuss various aspects of RE@Agile in more detail.

Chapter 2 will discuss the prerequisites for successful system development: balancing vision and/or
goals, stakeholders and scope of the system.

Chapter 3 and 4 will discuss handling of functional requirements, quality requirements and constraints
on different levels of granularity.

Chapter 5 will discuss the process of estimating, ordering and prioritizing requirements to determine
the sequence of increments.

The chapters 2 through 5 mainly emphasize handling requirements by a group of developers (of 3 – 9
persons).

Chapter 6 discusses scaling Requirements Engineering for larger, potentially distributed teams,
including overall product planning and road mapping.

 A Clean Project Start

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 15 / 101

2. A Clean Project Start

Preparing the workshop before starting a major project is an established tradition in many crafts. It
includes preparing and gathering the necessary material, cleaning and sorting the tools, removing waste
from the previous project, and agreeing on the cornerstones of the upcoming project. Because of the
immaterial nature of software, such behavior may appear inadequate or old-fashioned. The opposite is
in fact true.

Most of the work in software development is mental work or plain thinking. This means that most of the
work is not visible from the outside compared to traditional crafts. In a workshop or a construction site,
mistakes are often visible to others and can therefore be corrected immediately. A mistake in thinking
can only be noticed if the output of the thinking is visible in some form. The output may then be
recognized by a person or system as wrong, leading to the understanding or identification of the mistake
in the thinking.

Agile approaches are often not aware of this problem. People think that direct communication and fast
feedback cycles are sufficient. Although they are really helpful and valuable, they are not sufficient. For
example: if the shared big picture and other visible artifacts are missing when the development starts,
then direct communication and fast feedback cycles cannot prevent multiple reworks.

The idea of a clean project start presented in this chapter describes important prerequisites that enable
successful iterative, incremental system development.

You will learn that a Clean Project Start should consist of three activities producing three tangible results
that can be used to steer iterative work:

 Definition of the vision and/or goals of the system

 Identification of the currently known scope of the system and the system boundary

 Identification of relevant stakeholders and other important requirements sources

You will learn details for each activity and their corresponding techniques in the next chapters. At the
end of this chapter, we will present the case study iLearnRE including exercises to practice the clean
project start. The case study will be used as an ongoing example for additional exercises in the following
chapters.

2.1 Visions and Goals

2.1.1 Fundamentals

The product vision and/or the goals of the product are of the utmost importance of every development
activity. They set the overall direction for development and guide all other activities. Vision and/or goals
are either triggered by problems or unsatisfactory circumstances encountered in the current
environment, or by changes in the environment that force us to react (for instance the introduction of
new legislation), or by innovative ideas that promise more or better business.

We use both terms –vision and goals– interchangeably. Agile methods often prefer to talk about vision
while Requirements Engineering approaches usually use the word “goals”. Both can be considered as
the most abstract formulation of what should be achieved by the system. All team members and all
relevant stakeholders should be aware of the defined vision and goals to understand what the team is
striving for.

The Product Owner is responsible for the formulation of the vision and/or goals. The Product Owner is
also responsible for explaining the details to team members. Being responsible does not mean that the
Product Owner must define the vision or goals alone. Typically, the Product Owner discusses the vision
and/or goals with relevant stakeholders and collects their input and feedback.

 A Clean Project Start

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 16 / 101

A common pitfall when defining a vision and/or goals is choosing the wrong perspective, meaning
formulating a vision and/or goals that say something about the system under development or part of it.
An example is the following statement:

“Create a website for buying and reading electronic books and audio books.”

This vision describes a system (a website) for buying and reading electronic books. Depending on the
circumstances, developing such a system may be a good idea or not. However, this statement is far too
restrictive to become a good vision statement because it characterizes the system rather than stating
what should be achieved by developing the system. The following statement chooses a different
perspective:

“Sell electronic/audio books to people in every place in the world (with an Internet connection)
and allow them to read/listen to the acquired book instantaneously.”

This statement is better compared to the previous one for several reasons:

1. The statement defines what the system shall achieve instead of defining the function of the
system.

2. The statement focuses on the benefits of the system for people (and the users).

3. Buying electronic/audio books wherever they are and reading/listening to the book
immediately.

4. The statement does not predefine the type of system.

5. A website may not be the proper solution for reading electronic books/listening to audio books.

The major drawback of formulating visions and goals that focus on the system itself rather than on the
what the impact is of the system, is that such formulations restrict the solution space for the team right
from the very beginning of the project. As a rule of thumb, avoid any reference to the system under
development (and the word “system” itself) in a vision or goal statement.

Visions and goals are normally associated with a time horizon. This time horizon defines the period in
which a vision or goal should be achieved. We therefore recommend that the definition of visions and
goals should always have a period (or even a specific date) attached to it. It is not necessary to include
the period in the formulation of the vision or goal itself, but the period should be clear to all team
members and stakeholders.

Agile recommends the definition of visions and/or goals for each iteration. Therefore, there can be
different statements for different time periods. A system or product development could have long term
goals (or strategic visions), for instance for the next 3 years, which in turn can be broken down into
goals to be achieved in specific years. And of course, in iterative development one should also have goals
to be achieved in the next iteration.

The benefit of defining visions or goals with a long-term perspective is, that the team members and all
stakeholders have a clear understanding of the big picture, and of the timeframe in which the big picture
will be achieved. This benefit can be illustrated with the bookshop example presented earlier. The stated
vision could be sub-divided as follows:

Overall vision “Sell electronic and audio books to people in every place in the world (with an Internet
connection) and allow them to read/listen to the acquired book instantaneously.”

 End of month 6: Sell electronic books to people in every place in the world and allow them to

read the electronic book immediately.

 End of year 1: Sell audio books to people in every place on the world and allow them to listen

to the electronic book immediately.

 End of year 2: Sell combined electronic and audio books to people in every place in the world

and allow them to read and listen to the electronic book at the same time immediately.

 A Clean Project Start

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 17 / 101

The sub-divided vision presents a clear timeframe for the project and includes the important
information that there will be a bundle of electronic and audio books where the reader can both listen
to and read the text at the same time. This information is very important for the team since they should
design the system for reading electronic books in such a way that it is possible to include the audio book
later in the process. Furthermore, the team is now able to give feedback to answer the question: Is it
realistic to realize the three goals within the defined timeframe?

2.1.2 Techniques for Vision/Goal Specification

In the previous chapter, you have seen fundaments related to the definition of vision and/or goals. In
this chapter, you will learn specific techniques that can support you in the development and definition
of vision and/or goals. Whatever form is chosen: every stakeholder has the right to know what the team
is striving for. Therefore, the definition of the vision and the initial goals must take place at the beginning
of a development effort.

2.1.2.1 SMART

SMART is an acronym and refers to a simplified style of writing goals and objectives, proposed in 1981
by George T. Doran [Doran1981].

According to Doran, the acronym stands for:

 Specific – target a specific area for improvement;

 Measureable – quantify or at least suggest an indicator of progress;

 Assignable – specify who will do it;

 Realistic – state what results can realistically be achieved, given the available resources;

 Time-related – specify when the result(s) can be achieved.

This original definition has been adapted by the Agile community in various ways. From a Requirements
Engineering perspective, the following definition is appropriate:

 Specific – target a specific area for improvement;

 Measureable – quantify or at least suggest an indicator of progress;

 Achievable (instead of assignable) – state a goal that is achievable for the team;

 Relevant (instead of realistic) – state a goal that is relevant for the stakeholders;

 Time-bound – specify when the result(s) can be achieved.

This modification takes into account two ideas behind agile development:

1. Goals should focus on achievability by the team without focusing on resources. Resources are
not planned; they are assigned by prioritization.

2. Relevance of the goal, meaning the value that is attached to the goal, is more important than the
question of achievability with respect to available resources.

To illustrate the application of SMART, we use the example given above:

“Sell electronic and audio books to people in every place in the world (with an Internet
connection) and allow them to read/listen to the acquired book instantaneously”.

 A Clean Project Start

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 18 / 101

The SMART criteria are satisfied by this statement as follows:

Criterion Example

Specific The experience of buying and consuming electronic and audio books will be
improved

Measureable The measurable outcome is buying electronic and audio books at every place
in the world (with an Internet connection) and reading/listening to them
instantaneously

Achievable Internet and mobile technology can provide the desired result

Relevant Electronic and audio books are a popular medium for many people

Time-bound The timeframe is detailed (see above for details)

The SMART criteria can be applied either as a template or as a checklist for a goal formulation. In the
template approach, you explicitly describe each element of the SMART criteria. The table above is an
example of this approach. The disadvantage of the template approach is that it typically creates
redundancy in the formulation.

In the checklist approach, you use the SMART criteria to verify if your goal statement covers all aspects.

A good combination of both approaches is the following: Make up your mind by using the SMART
template and then use the outcome to define a precise goal that can be communicated easily.

2.1.2.2 PAM

PAM is an alternative set of criteria for goal formulation proposed by [Robertson2003]. The criteria are
defined as follows:

 What is the purpose (P)?

 What is the business advantage (A)?

 How would we measure (M) that advantage?

The PAM criteria focus on the business value behind a goal and exclude the time-perspective of the
SMART criteria. A benefit of using this approach at an early stage is that it focuses on the different values
instead of forcing a time-perspective into the goal definition.

Referring again to our example above, the PAM criteria are not completely satisfied, as shown by the
following table:

Criterion Example

Purpose The experience of buying and consuming electronic and audio books will be
improved

Business
Advantage

Not stated explicitly

Measure The measurable outcome is buying electronic and audio books at every place
in the world (with an Internet connection) and reading/listening to them
instantaneously

 A Clean Project Start

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 19 / 101

The business advantage is not clear in our example. A business advantage could be:

 People buy more electronic or audio books when they are available instantaneously;

 People buy more electronic or audio books when they are traveling since the books are

available all over the world.

Like the SMART criteria, the PAM criteria can be used as a template or as a checklist for goal
formulations.

2.1.2.3 Product Vision Box

The idea behind SMART and PAM is the definition of explicit criteria that support the wording of goals.
These criteria are useful when you have gathered much information and want to structure this
information into proper goals and/or a proper vision.

Another way of approaching the definition of visions and goals is the Product Vision Box introduced by
[Highsmith2001]. The idea behind the Product Vision Box is that you create a physical package for your
product that shows the key benefits and ideas of a product to potential customers in a store.

A common format of the Product Vision Box is a half-day workshop. Invite key stakeholders, if possible
from the whole spectrum of those involved with your product (for example end users, marketing,
technical staff).

You provide cardboard boxes, various types of material (for example paper, pencil, crayons, board
markers, aluminum foil, wires) and media material (for example newspapers, magazines, photos) to the
participants of the workshop.

The agenda of the workshop should consist of alternating building and presentation phases. During the
building phase, a team of workshop participants (3-4 people) creates one or more boxes (packages).

During the presentation phase, the boxes are presented without any explanation to the participants.
Every participant can make up his or her mind about each box. Afterwards, the creators present the
ideas behind the box (es) and a discussion takes place.

As an option people that were not part of the workshop can be invited to join the last presentation phase.
This way external feedback is provided to the group, reducing the effect of group thinking.

The main advantage of the Product Vision Box is that people think about the product idea from the final
outcome backwards. A product package typically provides information about the most important key
features or benefits of a product. Such an approach implicitly supports a focus on goals and the overall
vision. It is great fun for the participants, since it creates a tangible outcome that can be used later on as
a kind of reference point for further discussion.

A common objection against the Product Vision Box is that there are types of products that cannot be
sold in simple packages but can be developed agile. An example from the field of non-IT projects:
Organizational Change projects have to deal with various problem domains and needs and therefore
multi-dimensional solutions have to be created that will not fit into one box.

2.1.2.4 News from the future

Another technique to approach the formulation of vision and goals is to write a newspaper article about
your product that comes from the future (see [HeHe2010]). This technique is derived from techniques
for personality development that motivate people to think about their life from the end, for instance by
writing their own obituary.

 A Clean Project Start

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 20 / 101

The news from the future can cover various topics and headlines. Good starting points can be:

 Successful product presentation – write an article from the perspective of a journalist who

participated at your successful product presentation. Mention features, impressions or ideas

that this journalist found great about your product;

 Happy 10th anniversary – imagine that your product celebrates its 10th anniversary and that a

journalist writes about this event in a newspaper article. Mention ups and downs in the story

of your product and how it has had an impact on peoples’ lives or on the business you are in;

 Product crash report – imagine your product fails and that a journalist reports on its failure.

Mention the reasons that led to the failure, and think about gaps in your knowledge of the

customer, missing features, or other quality problems.

The resulting article can be analyzed to identify potential vision and goals. It is also a good starting point
for further activities. For example, the SMART or the PAM criteria might subsequently be used to create
precise vision and/or goals statements.

The news-from-the-future technique can be performed by individuals or can be done as a group exercise
during a workshop. In the group exercise, the participants should write rather short articles that can be
read and discussed during the workshop.

2.1.2.5 Vision Boards

The term “Vision Board” refers to a class of techniques that provide structured graphical representation
of the vision and/or the goals on a physical board. The general idea is that:

a) The board provides a content- or time-oriented structure to visualize the whole set of vision

and/or goals to the stakeholders;

b) The vision board is considered to be a living entity that is modified constantly to represent the

current understanding of all stakeholders;

c) The vision board is the single point of truth for all stakeholders when it comes to the vision

and/or goals.

A very simple example of a vision board consists of three columns:

 Short-term vision and related short-term goals: what do we want to achieve in the near future

(for instance 4 weeks)?

 Mid-term vision and related mid-term goals: what do we want to achieve in the mid-term (for

instance 6 months)?

 Long-term vision and related long-term goals: what do we want to achieve in the long-term

(for instance 3 years)?

A second, structure-oriented example of a vision board is the “Product Vision Board”, defined by
[Pichler2016]. It consists of the following elements:

 Vision: What is your motivation for creating the product? Which positive change should it

bring about?

 Target group: Which market or market segment does the product address? Who are the target

customers and users?

 Needs: What problem does the product solve? Which benefit does it provide?

 Product: What product is it? What makes it stand out? Is it feasible to develop the product?

 A Clean Project Start

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 21 / 101

 Business goals: How will the company benefit from this product? What are the business goals?

2.1.2.6 Canvas Techniques

The term “Canvas Technique” refers to a set of techniques that aim at providing a structured overview
of several aspects of a product. Canvas Techniques are close to Vision Board techniques, but typically
have a broader scope and do not solely focus on the vision and/or goals of the product. Nevertheless,
the vision and/or goals are always part of canvases and are developed in conjunction with the other
aspects covered by the canvas.

Because of this broader scope, there are more slots when using Canvas Techniques that when using a
vision board. Therefore, Canvas Techniques require more space to document all aspects. Hence, the
term canvas is used, because a canvas can be much larger than a board. Nevertheless, the general idea
behind Canvas Techniques is similar to vision boards.

A popular example of Canvas Technique is the “Business Model Canvas” from [OsPi2010]. The idea
behind it is to describe a company’s or product’s value proposition, infrastructure, customers and
finances.

Another example is the Opportunity Canvas from [Patton2014]. This canvas assumes an already existing
product that has to be improved.

2.1.3 Changing Vision and/or Goals

Goals may change during a development effort because of new stakeholders or because of a changed
understanding of the system or the context. Therefore, the documentation of the vision and/or goals
should be updated on a regular basis. Techniques such as the Vision Board provide a physical
representation of the vision and/or goals and allow for easy communication of changed goals.

Changes to the vision or the goals should be documented explicitly including the rationale for changing
them. Formal documentation of these changes is not necessary. Lightweight ways of documenting
changes are:

 A diary or journal (analogue or in a tool) for the vision and/or goals, where every change is

documented with a date and the rationale.

 A photo of the vision board (or other representation), including notes that reflect the change.

This documentation should be considered as the common memory of the vision and/or goals and is
useful to reflect on changes and to recognize the frequency of changes. This frequency is an important
metric: too frequent changes, especially in later stages of product development, should be considered
an indicator that the overall product development is in danger since there is no clear overall direction
for the product.

2.1.4 Specifying the System Boundary Fundamentals

The concept “System Boundary” consists of a set of terms that allows for precise thinking and
documentation of the scope and context of the system. A proper understanding of the term “System
Boundary” requires an understanding of the terms “Scope” and “Context”.

The following definitions are included in the IREB glossary:

 System Boundary: The boundary between a system and its surrounding (system) Context.

 Context: The part of a system’s environment being relevant for understanding the system and

its requirements.

 Scope: The range of things that can be shaped and designed when developing a system.

 A Clean Project Start

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 22 / 101

Sometimes the Context of a system must remain unchanged and the System Boundary is non-negotiable.

Typical examples are:

 Replacement of a technical component inside a larger existing system. For example, a software

component of an embedded control unit in an existing car production line must be replaced

due to changed legal requirements. The cars are already in use and the component must fit

within the existing interfaces and hardware. Changing these aspects is not possible.

 Development of a system within an existing ecosystem. For example, an insurance company

has a web portal for customers to manage their insurance contracts. The company has decided

to develop a smartphone app as a second channel for customers. The app will have the same

functionality as the web portal. The app development project may not change the portal or the

interfaces to other systems.

In many development efforts, however, the scope and the system boundary may be negotiated. That is,
elements of the context may indeed be modified during the development effort. This statement may
appear abstract and theoretical, but it has a significant impact on every development effort. It must be
clear from the beginning which elements of the system context can be modified and which elements
must remain unchanged.

A typical situation is the improvement of a business process with a new system. For example, a bank
wants to replace a paper-based application for new accounts with a web portal solution2. In the existing
process, the potential customer sends the paper application form to the bank. A bank clerk approves the
paper application and sets up the bank account by entering the data into the banking system. The new
system provides a web-based application for potential customers: the customer enters his or her data
into the form and sends the data to the bank. Immediately after sending the data, the customer receives
confirmation of the application via email. This is the intended modification in the system context
(potential customers no longer use a paper form, they now use the web-based application).

The more interesting part of this example is the process in the back office. Here, three scenarios could
be possible:

1. The application data is sent via email to the bank clerk. The bank clerk performs the existing
approval process and enters the data manually into the banking system.

2. The approval process is performed within the new web portal by the bank clerk. The bank clerk
checks the application data within the web portal. If the clerk accepts the application, then the
web portal uses a new interface to the banking system to setup the bank account automatically.

3. The approval process is performed automatically by the new web portal. The web portal is
equipped with a rule-based approval engine that allows automatic approval of standard
applications. In case the application is approved, the web portal sets up the bank account
automatically. In case it’s not approved, the application must be checked by a bank clerk.

This is of course an over-simplified and incomplete example, but it shows the impact of the scope
decision. In the first scenario, the scope is limited to the web portal, the new application process, and
the email transfer of application data to the clerk. In the second scenario, the scope also includes the
way the bank clerk works in the back office and the data transfer to the banking system, but the decision
on the application remains with the clerk. In the third scenario, even the decision process has become
part of the scope of the project.

Which of the three scenarios is appropriate for the bank concerned is not clear from our example and
depends on various factors that must be identified and decided during the development effort.

2 Comment: The description of this example is incomplete by intention. We will uncover further missing aspects
on the following pages to illustrate the benefit of various techniques. In case you believe that you already have
spotted some missing things, note them and see if we share your viewpoint.

 A Clean Project Start

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 23 / 101

Nevertheless, the bank example shows that a shared and common understanding of the scope and the
context of the system is a prerequisite for an effective and efficient development effort.
Misunderstandings related to the system boundary or the scope may lead to:

 Development of functionalities or components that were not under the responsibility of the

development effort. For example, our bank project has started to develop the rule-based

approval engine (scenario 3), but the stakeholders never agreed on such an approval engine. If

the stakeholders decide that this approval engine is not required, then the development effort

for this engine is lost.

 The wrong assumption that functionalities or components that are in fact part of the system

should have been developed outside the system (the assumed scope was too small). For

example, our example bank project has implemented the email transfer of application data to

the clerk (scenario 1), but the stakeholder expected that the approval has be performed inside

the web portal (scenario 2).

The system and the context boundary can be defined by discussing:

a) Which features or functionalities have to be provided by the system and which have to be

provided by the context? This question targets the system boundary by talking about concrete

capabilities of the system. For example, in our bank project, may the system approve an

application automatically or not (scenario 2 or 3)? Another discussion could be the setup of a

new bank account: should the new system perform this task or not (scenario 1 or 2)?

b) Which technical or user interfaces have to be provided by the system to the context? This

question targets the system boundary and is closely related to the feature/functionality

question above. Many functionalities require interfaces to users or other systems. For example,

in our bank project, the automatic setup of new bank accounts (scenario 2) requires an

interface to the banking system. Also, the approval by the bank clerk inside the web portal

(scenario 2) requires a user interface to display and approve the application data.

c) Which aspects of the context are relevant / irrelevant for the system? This question targets the

context boundary by explicitly addressing aspects of the context that have to be examined

during system development. For example, in our bank project, the application form and the

process for sending the data to the bank is definitely part of the context. Whereas the setup of

the bank account may be part of the context (scenario 2 and 3) or may be outside of the

context (scenario 1).

d) Which aspects of the system context can be modified during system development? This question

targets the scope of the system by defining which context aspects may be modified or not. It is

important to recognize that an element in the scope is per definition part of the system context.

For example, in our bank project, it could be the case that the approval decision must remain

with the bank clerk (making scenario 3 impossible).

All four questions are of course closely related and must be discussed together. Keep in mind that the
Context Boundary is always incomplete as it can only be defined by the things that one explicitly
excludes from the System Context. Similarly, the Scope is never final and may change during a
development effort. The important message from a Requirements Engineering perspective is that
changes in Scope, System Boundary and Context Boundary must be made explicit for all relevant
stakeholders.

 A Clean Project Start

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 24 / 101

2.1.5 Documentation of the System Boundary

The scope and the system boundary can be documented and clarified with several techniques. In this
chapter, we will present four of these: context diagrams, natural language, use case diagrams and story
maps.

2.1.5.1 Context Diagram

The context diagram is an element of the essential system analysis [McPa1984] and uses diagrams to
represent the context. It documents the system, aspects of the context, and their relationship. The
notation of a context diagram consists of three modeling elements:

 The system under consideration (circle);

 Aspects of the context (boxes);

 Arrows to represent connections between elements. The direction of the arrow represents the

flow of information.

The following figure shows the context diagrams for all three scenarios of the bank account application
portal.

Figure 2: Three context diagrams for the bank account application portal example

All three scenarios include the relationship between the potential customer and the portal (the
customer sends application data to the portal) and the relationship between the bank clerk and the
potential customer (the bank clerk sends a notification for approval/refusal of the application to the
potential customer). Documenting the second relationship (between the potential customer and the
bank clerk) is not part of the original context diagram. However, it is useful to document this
relationship in practice, since it clearly denotes that the system is not responsible for sending this
notification.

The context diagrams for scenarios 2 and 3 share the relationship with the banking system to setup the
new bank account in case of approval. This relationship is not part of scenario 1, since the bank clerk
sets up the account manually.

 A Clean Project Start

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 25 / 101

One could argue that the relationship between the bank clerk and the banking system could also be
documented in the context diagram for scenario 1. There are arguments for and against this:

 For: Setting up the bank account is part of the overall business process (create a bank account)

and it must be documented to understand the overall context.

 Against: Setting up the bank account has been defined as out-of-scope for scenario 1.

Therefore, it should not be documented.

 Both arguments are understandable and valid. The decision for or against the documentation

of such relationships depends on the overall project context.

The main difference between all three scenarios is the relationship between the bank clerk and the
portal. In scenario 2, the bank clerk receives all application data and must approve or refuse them. In
scenario 3, the bank clerk only receives those applications that cannot be decided upon automatically.
In addition, the context diagram for scenario 3 reveals a new and previously missing aspect: the bank
clerk receives a notification for automatically approved/refused applications. This information is
necessary for the bank clerk to send a notification to the potential customer.

Although the portal example is an oversimplified example, the context diagrams for all three scenarios
are substantially different and provide an easy overview of the system and the context.

2.1.5.2 Natural Language Documentation of Scope and System Boundary

Natural Language is the most flexible and easy to use technique to document Scope and System Context.
Just provide a list of features/functionalities of the system and a list of further aspects to document the
System Context (remember to document aspects that are considered outside as well). Use an additional
list to document the Scope of the system.

The Scope and System Boundary documentation from scenario 1 of the banking project could be
represented by the following list.

Scope and System Boundary of the Bank Account Application Portal (Scenario 1)

Features/functionalities of the system:

 Web-based form to apply for a bank account

 Send email to customer to confirm having received the application form

 Send application data via email to the bank back office

Aspects inside the context:

 Customer who wants to apply for a bank account

Aspects inside the scope:

 Process of filling out the application form (performed by customer)

 Process of sending application data to the bank clerk

Aspects outside the context:

 Bank clerk from the bank back office who approves the application (or not)

 Setup of the bank account (if application is approved)

 Send approval of application to customer (if application is approved)

 Send refusal of application to customer (if application is not approved)

 A Clean Project Start

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 26 / 101

Comparing this list with the description of scenario 1 in chapter 2.2.1 reveals one new aspect that has
not been mentioned before: The description does not mention approval or refusal information. It is not
clear how the customer is notified of the approved or refused application.

The above list shows that this issue is not part of the context, hence the development effort does not
need to concern itself with this topic. Without this explicit statement, it is very likely that different
stakeholders might have different expectations on how approval or refusal would be handled with the
new system.

2.1.5.3 Use Case Diagram

The Use Case Diagram is part of UML. It is a diagram type that models the actors and the use cases of a
system. A use case specifies the behavior of a system from a user’s (or other external actor’s or for
example other system’s) perspective: every use case describes some functionality that the system must
provide for the actors involved in the use case.

The focus of Use Case Diagrams on actors and their related functions on a detailed level is very useful
for clarifying Scope and System Context. The following notation elements of Use Case Diagrams are
useful for modeling the System Context:

 System Boundary (box with name of the system)

 Actor (stick figure with name below or box with name)

 Use Case (oval with name of use case)

 Relationship between Use Case and Actor (line)

Use Case Diagrams also provide notation elements to model relationships between use cases (for
example extends and include relationships). The notation elements are used to document more detailed
relationships among use cases. This level of detail is typically not useful for an initial clarification of the
system context. The following figure shows use case diagrams for all three scenarios of the bank account
application portal.

Figure 3: Three use case diagrams for the bank account application portal example

 A Clean Project Start

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 27 / 101

At first sight, the use case diagrams give an overview of the increase of the functional complexity of the
three scenarios. Scenario 1 is very simple (one use case), whereas scenario 3 is the most complex one
(five use cases).

The core information of the use diagram is carried by the names of the use cases. Therefore, it is
important to carefully define proper names for the use cases. Comparing the use case diagrams for
scenarios 2 and 3, one can see that the use cases for “considering an application” in scenario 3 are
detailed with the adjectives “automatically” and “manually", to clarify who is performing that task. This
clarification is not necessary for scenario 2, since the bank clerk is responsible for considering all
applications.

The main differences in terms of system boundary between the three scenarios are clearly visible:

 In scenario 1, the bank clerk is not part of the system context, since the clerk is not an actor of

the portal; the clerk receives the application via email.

 In scenarios 2 and 3, the bank clerk is part of the system context, since the clerk interacts in

various ways with the system.

 In scenarios 2 and 3, the banking system is an actor, since the portal has to interact with the

banking system for setting up bank accounts.

One aspect of the process is not mentioned in the diagrams: the notification of the customer in case of
approval or refusal. If this notification is part of the banking system, then the diagrams are correct and
the notification is out of scope. But, if this is notification is part of the application portal, the diagrams
must be extended to include the notification.

Comparing the use case diagrams and the context diagram (see Figure 2), the main differences between
the two notations can be seen:

 In the context diagram for scenario 1, the bank clerk is documented, since the clerk is an

element of the system context that receives information (via email) from the portal. In the use

diagram for scenario 1, the bank clerk is not present since the clerk is not an actor with respect

to the portal.

 The use case diagram does not allow documenting relationships between actors that are

outside the system, but inside the system context. The context diagram allows documentation

of the information flow between context elements (the notification of approval/refusal from

clerk to potential customer).

 The use case diagram provides an initial functional decomposition of the system (the use

cases). This functional decomposition is not visible in the context diagram.

These differences originate from the notation elements of both diagrams and should not be understood
as advantages or disadvantages of one diagram over the other. If possible, one should create a context
diagram and a use case diagram in parallel to benefit from the strengths of both diagrams. If one must
choose between context and use case diagram, the following rule of thumb is helpful: if the system under
consideration is embedded in a complex context with various important interactions outside the system,
then a context diagram would be preferable. If the system under consideration has a complicated set of
functionalities and interactions with various users and/or related systems, then a use case diagram
would be preferred.

 A Clean Project Start

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 28 / 101

2.1.5.4 Story Map

A Story Map [Patton2014] is a technique for documenting and managing product development during
the whole product development process. Its main structure is a two-dimensional arrangement of user
stories. The horizontal dimension focuses on the backbone, meaning the narrative flow of the system
(or the overall process provided by the system). The vertical dimension provides details for each part
of the narrative flow as well as a separation of items according to the development sequence of the
software.

Thus, the Story Map provides a useful model for understanding the functionality of the system and
describing context/scope on a detailed level. Further details on Story Maps will be presented in chapter
3.4.

2.1.6 The Inevitability of a Changing Scope

The definition of an initial scope (including the system context) must take place at the beginning of a
development effort. Without a clear scope, the team has no frame for their development effort and
without an understanding of the context, the team has no understanding where the system will be
situated and no understanding where to look for information about what to develop.

Nevertheless, scope and system context are never final and stable. In fact, the only event that would
make the scope and system context stable would be to take the system out of operation! There are many
reasons that require an adjustment of the scope and/or the context. The customer may demand changes
and require new functionalities; changes may be necessary as the result of new or modified legislation.

The most common reason, however, for changing the scope and/or the system context, is the evolving
understanding of the developers and/or of the stakeholders. In general, every development effort
constitutes a significant change in the system context and these changes cannot be fully predicted.
Learning new things is natural in such situations, and new learning often has an impact on scope and/or
system context.

This situation is not an excuse for not having a proper definition of scope and system context. From a
Requirements Engineering perspective, in fact, it is the main reason for defining scope and context
systematically. Without a proper initial understanding of current scope and system context, it is only a
matter of chance whether the need to adjust it later, will even be recognized. The techniques presented
in this chapter are lightweight and easy to use. Using the techniques properly requires only a little effort
and provides huge benefits to every development effort.

2.2 Stakeholder Identification and Management

2.2.1 Fundamentals

According to the IREB glossary, a Stakeholder is a person or organization that has a (direct or indirect)
influence on the requirements of a system. Furthermore, indirect influence also includes situations
where a person or organization is impacted by the system.

This definition emphasizes the importance of Stakeholders, the proper identification of Stakeholders
and of Stakeholder Management during the development effort. The statement “responding to change
over following a plan” from the Agile Manifesto is often misunderstood and used as an excuse to skip
proper Stakeholder Identification at the beginning of a development effort. The identification of a new
stakeholder is an inevitable change to which the team must react.

 A Clean Project Start

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 29 / 101

Failure to identify and include an important stakeholder in a development effort can have a major
impact: important requirements can be discovered (too) late, or even missed altogether. This may lead
to expensive changes late(r) in the process or even a useless system. Stakeholder Identification and
Management is an important investment to minimize the risk of missing important stakeholders and
their requirements.

2.2.2 Identification of Stakeholders

In this chapter we present the onion model as a simple technique for Stakeholder Identification and
classification. Furthermore, the importance of users as central stakeholders, as well as the importance
of indirect stakeholders, is discussed.

2.2.2.1 Onion model for stakeholder identification and classification

The Onion Model from Ian Alexander [Alexander2005] is a simple tool for Stakeholder Identification
and classification. The model consists of three types of stakeholders (onion layers) that can be
systematically searched for stakeholders:

 Stakeholders of the system: these stakeholders are directly affected by the new or modified

system. Typical examples of this class are users, maintenance personnel and system

administrators.

 Stakeholders of the surrounding context: these stakeholders are indirectly affected by the new

or modified system. Typical examples of this class are managers of users, project owners,

sponsors, or owners of connected systems (for example systems that have an interface with

the system under development, see chapter 2.2.4).

 Stakeholders from the wider context: these stakeholders have an indirect relationship to the

new or modified system or to the development project. Typical examples of this class are

legislators, standard setting bodies, competitors, non-governmental organizations (NGO’s),

Trade Unions, Environmental Protection Agencies et cetera.

Stakeholders of the system are also called direct stakeholders. Stakeholders from the surrounding and
wider context are also called indirect stakeholders.

The onion model can be applied in several settings for Stakeholder Identification:

 Thinking tool - use the onion model to systematically think about the system under

development and to write down every possible stakeholder that comes to mind for each layer.

 Interview guideline - use the onion model as a guideline for short stakeholder interviews.

During the interview, the stakeholder can be asked for potential stakeholders within each layer

of the onion.

 Workshop guideline - use the onion model to structure a workshop for stakeholder

identification. The model can be used as a visualization tool (for example on a board or flip

chart). Each layer of the onion can be analyzed with the workshop participants. For example,

every stakeholder writes the names of stakeholders on a card. Alternatively, each layer can be

elaborated during a brainstorming session.

 A Clean Project Start

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 30 / 101

As a rule of thumb, the identification of stakeholders should rely on a broad range of sources. A single
interview with one person is typically not sufficient to identify the most important stakeholders.
Instead, the Product Owner should plan for several interviews and/or workshops for stakeholder
identification. If certain names are mentioned several times (for example Maria is referred to as a very
knowledgeable person on some business topics), then this redundancy should be interpreted as a sign
of importance and not as time wasted.

2.2.2.2 Importance of the user as a direct stakeholder

If a system has human users, these users are amongst the most important direct stakeholders. The
success of a system relies on the acceptance of the system by its users. Even if the features of a system
are perfectly implemented, then the system is worthless if the users do not want to use the system.

A simple classification with respect to stakeholders is the separation between open and closed
environments:

 In an open environment, the users have alternatives to select from. For example, a company

wants to develop new office software (for example for word processing and presentations).

There are several alternatives on the market for this kind of product. The stakeholder analysis

must focus on information that helps to convince users to switch from their existing system to

a new one.

 In a closed environment, the users are “forced” to use a new system. For example, a company

develops a new business administration system for managing their business and every

employee of that company must use this new system because it is connected to every part of

the company. In such a closed environment, stakeholder identification (and management) may

not receive sufficient attention, because the users have no choice but to use the system. Such

behavior underestimates the power of the corporate immune system: if the users do not accept

the new system, then the immune system of that organization will find a way to prevent its

introduction.

The users of a system (in both open and closed environments) typically cover a wide spectrum of people
with different expectations, attitudes, and prerequisites. Understanding the spectrum of users for a
system is an important first step.

If the number of users is small, it is advisable to get to know them (or their representatives) via personal
interviews. In such situations, the users can be asked requirements-related questions directly.

If the number of users is large or even unknown (typically in open environments), the spectrum of users
should be captured using other means. A proper tool for such a situation is the Persona Technique
[Cooper2004]. A Persona represents an example user with distinct characteristics. Such a Persona is
typically described in a detailed way including a real name (for instance Jim), one or more pictures, a
short CV and a list of hobbies. The goal of the description is to illustrate the persona as realistic as
possible and to ask requirements-related questions to this persona (for instance: What kind of search
function would Jim prefer?). A single persona is typically not sufficient for a development effort. As a
rule of thumb, a project should develop 3-5 persona with various backgrounds. It is especially advisable
to develop persona with distinct positions (for instance a novice and an expert business person). If new
software is developed for these selected distinct user profiles representing the extreme usage scenarios
of the product, then most mainstream users (for example the average or experienced user) will also
accept the system.

 A Clean Project Start

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 31 / 101

Persona is a technique that is embedded in the design process of new software. An alternative, more
measurement-oriented approach is the application of data analytics, Google analytics and big data: The
behavior of online users can often be analyzed directly by embedding such technologies into deployed
product increments. The main benefit of such techniques is that they provide concrete data on user
behavior. The main drawback of such techniques is that they must be planned in detail and implemented
into the software increment. Hence, the measurement objectives for such techniques have to be clear
since gathering of the related data is expensive.

2.2.2.3 Importance of indirect stakeholders

Indirect stakeholders can be found in the surrounding context of the system and may be as important
for a development effort as the users themselves. The term indirect stakeholder is by intention very
broad since indirect stakeholders differ significantly for different types of systems. The general idea
behind indirect stakeholders is to search for stakeholders that can have impact on the success of a
system, either positively (support) or negatively.

Support can be provided in various forms. A stakeholder can provide important information related to
the domain (for example important business rules or user needs) or on future developments in the
domain (for example a new type of product, a new law that may impact the business). A stakeholder can
also provide political support during the development and introduction of the system (for example an
important manager from a related department).

A negative impact on the success of a system may also happen in various ways. An important aspect may
be, for example, the formal admission of a system in regulated environments (for example medical
systems): if relevant stakeholders for the admission of a system are not involved early in the
development process, then a new system may fail to fulfill important admission criteria. The political
dimension of a development effort is another aspect (for example a manager of a department with a
competing product may hinder the development). The negative impact is not limited to the development
effort. Underestimated types of indirect stakeholders are NGO’s or people that are only loosely related
to a system. For example, an NGO that is active in the field of personal health data protection may have
a strong view on storing certain types of personal health related data. If you develop a system in this
area, then such an NGO may start a campaign against your system.

Investing time in the identification of indirect stakeholders should be considered as a means of
gathering additional information for the development process in order to reduce the risk of failure. As
a rule of thumb, a Product Owner responsible for Requirements Engineering should develop a broad
view on indirect stakeholders. Talking to indirect stakeholders is often beneficial, even if an indirect
stakeholder does not provide new insights; the confirmation of already known information is often also
beneficial.

2.2.3 Management of Stakeholders

Systematic identification of key stakeholders must take place at the beginning of a development effort
as a setup activity. Managing the identified stakeholders throughout the development effort is a
continuous activity. Although this sounds very costly, a simple list including contact details and relevant
attributes (for example areas of competence or availability) will suffice in most contexts. If the project
uses a wiki to manage the documentation, then the stakeholder list can be created and maintained easily
in the wiki.

The list may change at any time, either because a stakeholder was initially overlooked or due to changes
in the context, such as a new NGO being established. Once a new stakeholder has been identified, the
stakeholder should be approached to elicit the requirements for the new system and to gather other
valuable information.

 A Clean Project Start

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 32 / 101

Because of the broad range of possible stakeholders, every participant in a development effort (for
example the developers and the Product Owner) should participate in the identification of missing
stakeholders. The first step is to create awareness among the developers about the importance of
stakeholders and to look for signs of new or missing stakeholders.

2.2.4 Sources for Requirements beyond Stakeholder

Depending on the system and the domain, existing documentation, neighboring systems with interfaces
to the developed system, legacy systems or even competitor systems may also be important sources of
requirements. The following list provides some examples:

 If the system under development has a predecessor system, the documentation (if there is any)

and the source code of this legacy system can provide important requirements (for instance

detailed requirements on data structures);

 If the system under development has interfaces to other existing systems (for example in a

large business context), the documentation of the interfaces provides important requirements

for the interaction between the system under development and these systems. The users,

developers et cetera of these existing systems are of course important stakeholders;

 Almost every system has one or more similar systems, meaning systems that perform similar

tasks in other contexts. Such similar systems are often underestimated as a source for

requirements and ideas. If you develop, for example, a shopping system for a highly specialized

product, then you should have a look at existing online shops and their functionalities to see if

they could also be useful for your systems;

 If developing a highly innovative system, recent research in this area could also be an

important source for requirements. There are several Internet databases that can be searched

for research material (for instance Google scholar).

If your development effort can benefit from additional sources for requirements, these should be
systematically identified and managed in a way similar to managing stakeholders. Detailed information
on the management of other requirements sources is provided in the IREB Advanced Level module
Elicitation.

2.3 Summary

The definition of Vision and Goals, Stakeholders, System Scope and Context are interdependent:

 Relevant stakeholders formulate the vision and the goals. Therefore, the identification of a new

stakeholder may have an impact on the vision or the goals.

 The vision and goals can be used to guide the identification of new stakeholders by asking:

Which stakeholder may be interested in achieving the vision and/or the goals or is affected by

achieving the vision and/or the goals?

 Vision and goals can be used to define an initial scope by asking: which elements are necessary

to achieve the vision and/or the goals?

 Changing the system boundary (and thus the scope) may have an impact on the vision and/or

the goals. If aspects are removed from the scope, then the system may no longer have sufficient

means to achieve the vision and/or the goals. Conversely, if the scope is extended, this may

provide new means to fulfill the vision and/or the goals.

 A Clean Project Start

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 33 / 101

 Stakeholders suggest the system scope. Therefore, the identification of a new, relevant

stakeholder may have an impact on the scope. For example, an important manager may decide

that the scope of the project can be extended.

 A change of the scope (for example to fulfill a new or modified goal) requires agreement from

the relevant stakeholders.

These strong interdependencies mean that it is important to balance all three elements and to examine
the impact of changing one of the three elements on the others. Being aware of these interdependencies
is the first step towards working jointly on vision and goals, stakeholders and scope. Because of these
tight interdependencies, we recommend handling these elements together.

Before starting with iterative development, we recommend creating a coherent, initial specification that
includes:

 vision and/or goals

 scope and system context

 initial list of stakeholders (and potentially other sources)

The methods and tools presented in this chapter can be used in a lightweight way to create such a
specification. A good, lightweight starting point is a half-day workshop with all three elements on the
agenda. Every participant should prepare for the workshop by answering the following questions:

 What is your vision for the system? What are the most important goals for you?

 What is your understanding of the system context and the scope?

 Which stakeholders and other sources (documents, systems) have to be considered for the

project?

If the workshop participants are not familiar with the terminology, provide the definitions as
background information to them. The outcome of this workshop is a starting point for the creation of an
initial specification using the methods and/or techniques described in this chapter.

The initial specification should be considered as a living document that should be checked and updated
on a regular basis. The rituals and techniques of agile development provide several ways for lightweight
maintenance of this documentation. A pragmatic approach is to include a crosscheck against
context/scope documentation in the definition of ready. For example, if the scope was described by
means of a use case diagram, then every user story would be linked to a use case and actor.

2.4 Case Study and Exercises

Throughout this Handbook we will use a case study. Imagine that you want to create a system that
allows students to use a training platform via Internet to learn about Requirements Engineering. Short
video lessons should be offered together with questions to assess whether a student mastered the
various topics. The platform should be useable on any device that allows the students to connect to the
Internet, meaning smart phones, tablets, laptops, … For the manager of a larger group of students the
platform should offer information about the progress of the individual students. We suggest calling the
platform “iLearnRE”.

 A Clean Project Start

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 34 / 101

Suggestions for Exercises:

If you want to practice the Clean Project Start, we invite you to use the iLearnRE case study. As an
initial list for the vision and/or goals, we have defined the following statements:

▪ Online Video Training Portal to learn about Requirements Engineering and prepare for the

IREB exam

▪ Available on different platforms even with low-bandwidth internet connections

▪ Includes a chat room/discussion forum to discuss issues with other students

▪ A management dashboard to control progress of students in your team

We have further defined the following list of users:

▪ Students

▪ Administrator of the Portal

▪ Team Leaders (of Students)

▪ Question Authors

With this information, you can work on the following exercise:

1) Use the techniques from paragraph 2.1.2 to reformulate the vision/goal statements

2) Create a context diagram for iLearnRE

3) Create a use case diagram for iLearnRE

4) Think about additional stakeholders for iLearnRE

 Handling Functional Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 35 / 101

3. Handling Functional Requirements

In chapter 2 you have learned about the clean project start, for instance about important prerequisites
that you should gather before beginning iterative, incremental development.

This chapter deals with eliciting, discussing and capturing Functional Requirements. The other two
categories of requirements (quality requirements and constraints) will be discussed in chapter 4. Many
of the ideas in this chapter are also relevant for these other two categories.

In this chapter you will learn that it is quite normal that stakeholders talk on different levels of
granularity all the time. They will sometimes ask for very abstract things, where you as a Product Owner
will have to work quite hard to find out all relevant details. And sometimes they will ask for very small,
precise things that are already close to what developers can understand and implement. Your job as a
Product Owner is to deal with all these levels of granularity. High level is not bad if these features are
not needed very soon. But for those that should be implemented in one of the next iterations more
precision is required.

In the agile world, coarse-grained requirements are often called epics, themes or features. This chapter
will show you how to transform them into INVEST user stories, that is to make them precise enough so
that they can be dealt with by the developers.

As soon as you accept the idea that requirements do exist on different levels of granularity, some
questions naturally arise:

 How do we deal with multiple levels of granularity?

 Which criteria can and should be applied to split big, abstract topics into smaller chunks?

 Is it sometimes necessary to group many small requirements into larger chunks so that we

have a “bigger picture” for orientation?

 How precise do we have to be before the developers can begin with the implementation?

 Is it necessary or advisable to keep multiple levels of requirements, or can we throw away

abstract statements as soon as we have more concrete requirements?

 Do we have to capture all of this in writing or can we simply talk about it?

In this chapter we will deal with all those questions. As mentioned earlier we will concentrate on
Functional Requirements. In chapter 4 we will discuss quality requirements and constraints. In chapter
5 Estimation, Ordering and Prioritizing of Requirements will be discussed. This chapter 3 is solely about
managing complex functional requirements and refining them to a level such that they can be taken on
by developers.

3.1 Different Levels of Requirements Granularity

Let us take some examples from our case study “iLearnRE“. We can formulate one of our goals as: “As a
student I want to learn about Requirements Engineering in an online video course, so I do not have to
go to a classroom“.

Let us assume that one of your stakeholders now asks for the following feature:

“As a department head I want to be able to check the learning progress of all my employees”

This is not a very precise statement, since we do not necessarily understand what “progress” means.
Also, we do not know what the result of this check should look like. But it is a relevant request. We would
characterize this as a coarse-grained requirement.

 Handling Functional Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 36 / 101

Assume that one of the students comes up with the request:

“While playing a video clip I want to be able to see the rest of its runtime in seconds”

This is a more precise requirement that still needs some more details for implementation (location, size,
color of the runtime display) for implementation. These details can be added by the Product Owner,
which will lead to a solution by the Product Owner, which is not necessarily the best solution. Or the
Product Owner asks the team during the refinement meeting for options regarding the details and
decides based on the available information.

Stakeholders constantly talk to us on all levels of granularity. As a Product Owner you cannot, and should
not, force them to be more structured. Working with these different levels of requirements and
structuring them is your job as Product Owner, with the support of those helping you during the
Requirements Engineering process.

As Figure 4 shows, every system will have requirements on different levels of granularity below the top-
level vision and/or goals. As Product Owner you are striving for two goals:

1. To have an overview of all currently known functional requirements. This allows to select the
most valuable ones for early implementation, to keep the bigger picture in mind et cetera;

2. Understand requirements in enough detail so that they can be taken on by the developers for
implementation.

Some methods give specific names to the levels of requirements. SAFe for example calls the big chunks
“epics”, the mid-size requirements “features” 3 and the lower level requirements “user stories”. Other
popular names for more abstract requirements are “topics” or “themes”.

There is no consensus in the Agile community about the terminology for more abstract requirements.
We will discuss these terms in chapters 3.2 and 3.6.

During the requirements elicitation and documentation process, this hierarchy of granularity can be
established in different ways. As mentioned earlier, stakeholders typically tell you their wishes at
various levels. So you can try working top-down (from visions and/or goals to lower level
requirements), bottom-up (grouping lower level requirements into larger chunks), or middle-out
(starting with requirements in the middle, breaking some down into more detail while others are
grouped together).

Figure 4: Requirements on different levels of granularity

3 SAFe has also the optional Level “Capabilities” between Epics and Features.

 Handling Functional Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 37 / 101

As Product Owner you should maintain the relationships (traces or links) between all requirements.
This will not only give you a better overview, but will also allow you to discard requirements that are
not goal-oriented. Thus, you can avoid requirements creep and concentrate on those that should really
be achieved.

Note that some detailed requirements can be part of multiple, higher-level requirements, as indicated
by the black dots in Figure 4, for instance one detailed activity may be performed as part of two or more
business processes.

Figure 5 shows some example requirements from the case study iLearnRE, including their links.

Figure 5: Sample requirements from the case study

Such a structured hierarchy of requirements will allow the Product Owner (and all other stakeholders)
to avoid the risk of being lost in a larger project. The levels in this hierarchy can be used to come up with
estimates and they can be used to prioritize requirements. This will be discussed in more detail in
chapter 5.

Criteria for grouping or splitting requirements, useful notations to capture them, and tools and
techniques to support the overview will be discussed in the next chapters.

3.2 Communicating and Documenting on Different Levels

The vision and/or the goals have to be made more precise in order to come up with functional
requirements that can be communicated to and implemented by the developers.

Based on the principle of “divide and conquer“, we need to decompose a large system or product into
smaller parts. Figure 6 illustrates this approach. We will discuss strategies and tactics how to achieve
this goal.

 Handling Functional Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 38 / 101

Figure 6: Decomposing functional requirements

Here are some approaches for decomposing a large system (including examples from the iLearnRE case
study):

1. Split into logical functions (also called features, epics or themes):

For example: Establishing a contract for e-learning, watching videos, testing your knowledge
with questions or checking learning progress

2. Use history, for instance the structure of an existing product, as a partitioning theme:

Since we have no predecessor project of our case study this strategy does not work here.

3. Split by organizational aspects (meaning parts serving different departments or user groups):

For example: Software for students, software supporting the team leader, software for the admins
of the iLearnRE product

4. Split according to hardware:

For examples: iLearnRE desktop with responsive design, iPhone native app, Android native app

5. Split by geographical distribution:

For example: iLearnRE for a country with the highest number of potential users, extension to
other countries with different legislation.

6. Split by data (business objects):

For example: functions dealing with videos, functions around questions, functions around
contracts and functions around invoices

7. Split into externally triggered, value-creating processes.

All of these approaches will result in smaller chunks that can then be analyzed separately.

The first six approaches look at the system’s internal structures: its functions, its historical structure, its
organizational split, its hardware or geographical distribution or its business objects.

Only the last approach (value-creating processes) starts in the context, outside the scope of our system.
It looks at external triggers to which our system should react.

These triggers could have different sources: human users needing something from the system, other
software systems sending input and requesting some system action, hardware devices (like sensors)
triggering an action inside our system.

The context diagram is a valuable source when identifying such external triggers, since it shows all
adjacent systems that might request some action from the system under consideration.

 Handling Functional Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 39 / 101

This value-oriented decomposition has been suggested by many authors over the past decades:
[McPa1984] called it “event-oriented decomposition“, [Jacobson1992] called it “use case
decomposition”, [HaCh1993] called it “business processes”, and finally [Cohn2004] called it “user
stories”. All of them suggest different notations to capture the results of this decomposition. Figure 7
shows such a decomposition in two of these notations: use cases and user stories.

Figure 7: A value-oriented system decomposition into processes in different notations

Let us ignore notations for a moment and study the characteristics of these decompositions. Agile
experts will recognize these criteria as the first three of Bill Wakes’ INVEST criteria [Wake2003]).

All the resulting processes are:

I: independent 4 of each other, meaning they are self-contained and minimize mutual dependencies.
They should not overlap in concept, and we would like to be able to schedule and implement them in
any order.

N: negotiable, meaning they do not yet represent a fixed contract, but leave space for discussions of the
details.

V: valuable: they bring real value to the requester, that is to a person or another system in the context.

The other criteria of INVEST will be discussed in the next chapter about user stories.

The approaches for decomposition as mentioned earlier can also be used. Especially when writing
requirements for an existing system, its current structure of components or subsystems is often a good
starting point for eliciting new requirements. There is, however, a danger of specification gaps or
overlap between those parts (see Figure 8). Since all backlog entries will be discussed and negotiated
you would probably catch such gaps and overlaps. But thinking in terms of value creating processes
(with whatever notation) avoids these dangers right from the beginning.

4 Another interpretation of the letter “I” is “Immediately actionable” [S@S Guide]

 Handling Functional Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 40 / 101

Figure 8: Specification gaps and overlaps

A suggestion about how to come up with a good value-oriented process decomposition is not to think in
terms of users or actors of the system, but to identify events that happen in the context and to which the
system has to react. [McPa1984] identified two basic kinds of events:

 External events: Triggered by users or adjacent systems;

 Temporal events: Triggered by time or observation of system internal resources.

As a Product Owner you might miss the second category since they have no explicit actor or user. The
system executes a predefined process without external triggering input, just triggered by time or
observation of internal resources.

Examples for both kinds from our case study:

 External event: “As a student I want to assess my knowledge with test questions.”

 Temporal event: “Two weeks before the end of the subscription period it is time to remind

students about a possible prolongation.”

We have now seen several approaches to find functional requirements to fulfill our visions and goals.
The suggestion is to apply a process-oriented decomposition strategy since it helps to identify
Independent, Negotiable and Valuable chunks of functionality. Any other decomposition strategy that
results in such INV-chunks is also fine.

As a Product Owner you want to achieve an overview of the system’s functionality. Of course, your
backlog is always open to accept more functionality; however, for decisions about the project roadmap,
for rough estimations, or for discussing minimum viable or minimum marketable products, the
overview will help you. It is a good basis for deciding where to look for more detail early on.

Having discussed ways to come up with a rough decomposition, let us now concentrate on
communicating and documenting these functional requirements.

The basic choice is between drawing and writing. You can visualize a level 1 decomposition of your goals
or visions either by drawing a use case diagram, or you can write larger user stories and put them onto
separate cards. Figure 7 showed excerpts from our case study in both styles, side-by-side. The following
chapter will discuss user stories in more detail.

 Handling Functional Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 41 / 101

Note that in principle both notations contain the same amount of information and are equally detailed
or abstract. It is more or less a matter of personal taste whether you prefer overview pictures or
writtenstories.

3.3 Working with User Stories

For a Product Owner, user stories are an excellent way to communicate requirements to all stakeholders
and also to the developers. User stories are usually captured on story cards, although a multitude of
tools is available to capture them electronically. In this chapter we will focus on the idea of user stories.

3.3.1 The 3 C model

As mentioned earlier stories are often written on index cards or sticky notes and arranged on walls or
tables to facilitate planning and discussion. This strongly shifts the focus from writing about features to
discussing them. In fact, these discussions can be more important than the actual text written on the
card or note.

Ron Jeffries [Jeffries2001] summarized this aspect in his 3C-model (Card, Conversation, Confirmation)
to distinguish the more social character of stories from the more documentary character of other
requirement notations. His ideas are explained in the following chapters:

The “card” (an index card or a sticky note) is a physical token, giving tangible and durable form to what
would otherwise only be an abstraction. The card does not contain all the information that makes up
the requirement. Instead, the card has just enough text to identify the requirement, and to remind
everyone what the story is. The card is a token representing the requirement. It is used in planning.
Notes are written on it, reflecting for example priority and cost. It’s often handed to the programmers
when the story is scheduled to be implemented and given back to the customer when the story is
complete.

The “conversation” takes place at different moments and places during a project, particularly when the
story is estimated (usually during release planning) and again at the iteration planning meeting when
the story is scheduled for implementation. It involves various people concerned with a given feature of
a software product: customers, users, developers, testers - and is largely a verbal exchange of thoughts,
opinions and feelings.

The conversation can be supplemented by other requirements, artifacts and documentation. Good
supplements are examples; the best examples are executable test cases.

The “confirmation”: No matter how much discussion or how much documentation we produce, we
cannot be as certain as we need to be about what is to be done. The third C in the user story’s key aspects
provides the confirmation that we have to have: the acceptance tests.

The confirmation provided by the acceptance test allows us to use the simple approach of card and
conversation. When the conversation about a card gets down to the details of the acceptance test, the
Product Owner and the developers settle the final details of what needs to be done. When the iteration
ends and the implementation team demonstrates the acceptance tests running, the Product Owner
learns that the team can, and will, deliver what’s needed.

 Handling Functional Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 42 / 101

3.3.2 A template for user stories:

Mike Cohn defines user stories in the following way:
(https://www.mountaingoatsoftware.com/agile/user-stories):

“User stories are short, simple descriptions of a feature told from the perspective of the person who
desires the new capability, usually a user or customer of the system. They typically follow a simple
template:

As a <type of user> I want <some goal> so that <some reason>.”

Note the three components of this formula. They ensure that:

1. we have someone who wants that functionality (“As a user …”),

2. we know what the user wants (“… I want …”) and

3. we understand the why, i.e. the reason or motivation (“… so that ….”).

The formula helps us to think about Who wants What and Why. It is not so much the formalism that
makes user stories successful, it is asking and answering these three questions.

You have seen some examples for stories from our case study iLearn in Figure 7. Here are some
additional examples:

 As a student I want to put questions into a forum so that others can provide answers or

opinions.

 As a questions author I want to add new questions and answers to the pool so that students

can test their knowledge.

 As manager of the portal I want to upload new versions of official IREB questions so that our

portal is always up-to-date with IREB.

In his definition Mike Cohn explained that user stories are told from the perspective of the person who
desires the new capability. Note that sometimes the word “user” is a bit misleading, since the person
wanting a feature is not necessarily the one working with the system as a user.

For instance, in the last example: the administrator who has to upload new versions of official IREB
questions is not necessarily the one who wants this to be done. It is the business owner who wants this
to be done.

This is especially true for processes that are time-triggered, meaning the process is executed
automatically by the system at a particular time or when some condition is fulfilled. A “user” is not
needed, but there has to be someone who benefits from the process – otherwise executing the process
does not make sense. As a Product Owner or Requirements Engineer you should always search for this
beneficiary. Ask yourself: Who really wants this feature and sees value in having the feature?

From a business point of view it often makes sense to talk less about “user stories”, but simply call them
“stories” – thus avoiding the explicit reference to a user. But you always have to find out who really
wants a specific story. In the following text we will use the short form “stories” as an alias to “user
stories” wherever appropriate.

If you want to avoid this discussion, simply refer to everything as a backlog item according to the scrum
guide [S@S Guide].

https://www.mountaingoatsoftware.com/agile/user-stories

 Handling Functional Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 43 / 101

Here is an example from our case study for a process triggered by a temporal event:

 Two weeks before the end of the subscription period it is time to remind students about a

possible prolongation.

If you want to write this feature as a story, according to the template of Mike Cohn, you have to identify
the owner of the platform as the beneficiary.

 As owner of the platform I want an automatic reminder being sent to a student two weeks

before the end of the subscription period to give the student the chance to prolong access to

the account.

3.3.3 INVEST: Criteria for “good” stories

In 2003 Bill Wake published an article [Wake2003] advising to INVEST in good stories. We have already
discussed the first three letters of that acronym in chapter 3.1: Stories should be Independent of each
other, they are Negotiable and they must be Valuable for someone.

In order to be good enough for implementation by a developer, they also have to fulfill the other three
criteria: Estimated, Small enough to fit into the next iteration and Testable.

Estimation techniques will be discussed in chapter 5.

If the estimate shows that the story is still too big to be implemented in one iteration, it has to be broken
up into multiple stories. Splitting techniques for stories are discussed in chapter 3.4.

And, finally, as mentioned above in the chapter about confirmation, stories have to include sufficient
details about test cases or acceptance criteria (usually captured on the back side of the card). This
represents an agreement on the things that the developers have to demonstrate to the Product Owner
at the end of an iteration. See chapter 3.5.

3.3.4 Supplementing stories with other requirements artifacts

As mentioned above, the story on the card does not contain all the information that makes up the
requirement. It is just a physical token to foster communication among all stakeholders and team
members. Sometimes, it is very useful to use other requirements notations and artifacts to supplement
the story on the card.

Feel free to use activity diagrams, BPMN, flow charts or data flow diagrams – in short: everything you
have ever used to visualize a business process or a flow of steps.

Example:

To better understand the story “As a student I want to create an account for the learning platform so
that I can acquire Requirements Engineering knowledge everywhere”, you could add the following
activity diagram:

Figure 9: Activity diagram to explain details of a story

 Handling Functional Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 44 / 101

3.4 Splitting and Grouping Techniques

In order to generate user stories that are small enough to fit within a single iteration, larger stories may
be split into more fine-grained ones. A number of authors have suggested patterns that can be applied
for this purpose, ranging from reducing the feature list to narrowing down the business variations or
input channels [Leffingwell2010].

One of the most extensive suggestions comes from Lawrence [Lawrence1] and is presented in the form
of an easy-to-learn cheat sheet. It advises you to ask yourself the following questions in order to achieve
smaller stories:

1. WORKFLOW: Does the story describe a workflow? If so, can you split the story in such a way
that you do the beginning and the end of the workflow first and enhance with stories from the
middle of the workflow later? Or, can you take a thin slice through the workflow first and
enhance it with more stories later?

2. MULTIPLE OPERATIONS: Does the story include multiple operations? (For instance, is it about
“managing” or “configuring” something? Can you split the operations into separate stories?)

3. BUSINESS RULE VARIATIONS: Does the story have a variety of business rules? (For instance, is
there a domain term in the story like “flexible dates” that suggests several variations?) Can you
split the story in such a way that you can do a subset of the rules first and enhance with
additional rules later?

4. VARIATION IN DATA: Does the story do the same thing to different kinds of data? Can you split
the story to process one kind of data first and enhance with the other kinds of data later?

5. INTERFACE VARIATIONS: Does the story have a complex interface? Is there a simple version
you could do first? Does the story get the same kind of data via multiple interfaces? Can you split
the story to handle data from one interface first and enhance it with the others later?

6. MAJOR EFFORT: When you apply the obvious split, is whichever story you do first the most
difficult? Could you group the later stories and defer the decision about which story comes first?

7. SIMPLE/COMPLEX: Does the story have a simple core that provides most of the business value
and/or learning? Could you split the story to do that simple core first and enhance it with later
stories?

8. DEFER PERFORMANCE: Does the story get much of its complexity from satisfying quality
requirements like performance? Could you split the story to just make it work first and then
enhance it later to satisfy the quality requirements?

9. Last resort: BREAK OUT A SPIKE: Are you still baffled about how to split the story? Can you find
a small piece you understand well enough to start? If so: Write that story first, build it, and start
again at the top of the suggestions. If not, can you define the one to three questions holding you
back the most? Write a spike with those questions, do the minimum to answer them, and start
again at the top of the suggestions.

Note that even fine-grained user stories should be defined in such a way that they deliver some value
for at least one stakeholder. Therefore, slicing a workflow into its individual steps is often
counterproductive, since implementing one or the other step may not deliver any value. Therefore
[Hruschka2017] suggests rather decomposing a use case (or a large process) into slices that go from
end to end. This is based on Ivar Jacobsons idea about use case slices [Jacobson2011]. Figure 10 shows
this idea in a graphical format.

 Handling Functional Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 45 / 101

Figure 10: Use case slices instead of process steps

Slicing can be done by different business objects or by technology. Then you can pick one of the slices
for early implementation and add others later. In addition you can shrink a slice by:

1. leaving out alternatives (for example first go for the normal flow, adding exceptional cases later
on),

2. leaving out options (for example leaving out things that are not absolutely necessary to be
implemented in an early release) or

3. leaving out steps that can still be done manually in early releases.

If you originally came up with stories that are too small to create business value (especially if they are
not independent and not valuable – thus violating parts of the INVEST principle) you should combine
some of them or otherwise reformulate them to get good, even if large, starting stories.

Take a look at the following stories from our case study:

 As a student I want to enter my name and address so that I can create an account.

 As a student I want to add my email address to my account to receive a link to the course.

This is too low level for valuable stories since the business rule requires all this data to create an account.
Better to reformulate:

 As a student I want to create an account to get access to the video learning platform.

Decomposition and grouping of stories will result in requirements hierarchies as discussed in chapter
3.1. This hierarchy can be visualized as a two-dimensional story map [Patton2014], see Figure 11. Above
the separation line, bigger groupings (like large stories, epics and features) are aligned in a way that
tells the complete story of the product. This helps to maintain an overview of the requirements; below
the separation line one can attach all lower-level details for the bigger groups and order them for
assignment to sprints and releases as in a linear backlog. In other words, the story map shows backlogs
per feature or epic while keeping the higher-level structure of the requirements intact.

 Handling Functional Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 46 / 101

Figure 11: The structure of a story map

3.5 Knowing When to Stop

The Product Owner is responsible for continuing discussions with developers until both sides have a
common understanding of the requirements [Meyer2014]. The Pareto principle can be used in assessing
when this point has been reached: requirements must not be defined 100% perfectly, but well enough
to address the team’s key questions and clear enough allowing for the implementation effort to be
estimated. Starting the implementation with too many open questions may reduce development speed
considerably and cause delays against forecasts.
For this level of joint understanding agile has defined the definition of ready (DoR) [AgileAlliance].
A story is ready when it fulfills the INVEST criteria [Wake2003], especially the last three of the letters:

 The developers have been able to estimate the story.

 The estimation is small enough to allow the story to fit into one iteration.

Lawrence suggests that the story should not only fit in one iteration, but it should be so small

that 6 – 10 stories can be assigned to the next iteration [Lawrence1]. To achieve this the

Product Owner has to be aware of the velocity of the team. (For more details on the velocity

see chapter 5.) If for example the team can handle 28 story points per sprint, then the user

stories should be so small that the sum of 6 to 10 stories does not exceed that value. The sprint

backlog should be composed of for instance 8 stories with 1, 1, 2, 3, 5, 8 and 8 story points and

a clear sprint goal should be formulated just in case the team cannot finish all the stories.

 The Product Owner provided acceptance criteria for the story. Based on the CCC principle

everyone agrees that there has been enough conversation and that the criteria for confirmation

of success in terms of acceptance tests were defined. If one uses cards to capture the stories the

acceptance tests are normally written on the back of the card.

Product Owners have a choice in case of a story that is already small enough to fit into one sprint: they
can keep that story and add more acceptance tests to the card. Or they can choose to split the story into
multiple stories, usually having less and more primitive acceptance tests for each of them.

Different styles are available [Beck2002] when formulating acceptance criteria. They can be informal
natural language sentences to be checked after implementation.

 Handling Functional Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 47 / 101

The acceptance criteria could be a little bit more formal using the Gherkin syntax [WyHT2017]. Gherkin
is a business readable, domain specific language created especially for the description of behavior. It
gives you the ability to remove logical details from behavior tests.

Gherkin suggests the following structure for writing test scenarios:

 Scenario: <<short descriptive name>

 Given <<some precondition>>

 And <<some other precondition>>

 When <<some action by the user>>

 And <<some other action>>

 Then <<some testable outcome is achieved>>

 And <<something else we can check happens too>>

Some methods even advocate using TDD (Test Driven Development). Instead of using a Domain Specific
Language (DSL) like Gherkin you can formally code the test cases so that they can automatically be
executed after implementation [Meyer2014]. This formal approach – while very precise – may be hard
to do and hard to understand for Product Owners and business-oriented stakeholders.

For the Product Owner the DoR is the equivalent to the definition of done (DoD) of the developers. DoD
defines criteria to determine whether a story has been successfully implemented while DoR defines that
the developers have sufficient information about a user story so that it can be “Done” by the developers
within one iteration.

Discussing requirements with developers needs time and is best done prior to the iteration planning.
Planning can then focus on selecting the right user stories and assigning these to the responsible
developers. Ideally, developers will have seen the requirements evolve, and helped the Product Owner
by asking questions and performing estimations.

Different forms of refinements are possible. Refinement meetings may, for example, be a more efficient
way of performing refinement than repeatedly disturbing individual developers. The product backlog
refinement and all the surrounding activities consume time from the overall iteration capacity. The
Scrum guide [S@S Guide] recommends a maximum of 10% capacity from the developers for refinement:
if more time than that is required, this is a warning sign for poor quality of the requirements. A Product
Owner should understand the relationship between iteration length, risk and iteration overhead, and
know that there are shorter feedback loops than the iteration itself.

3.6 Project and Product Documentation of Requirements

Agile projects, especially Scrum ones, use a product backlog, which is a prioritized list of the
functionality to be developed in a product or service. Although product backlog items can be whatever
the team desires, epics, features and user stories have emerged as the most popular forms of product
backlog items.

While a product backlog can be thought of as a replacement for the requirements document of a
traditional project, it is important to remember that the written part of an agile user story (“As a user, I
want …”) is incomplete until the discussions about that story has taken place.

It is often best to think of the written part as a pointer to a more precise representation of that
requirement. User stories could point to a diagram depicting a workflow, a spreadsheet showing how
to perform a calculation, or any other artifact the Product Owner or team desires.

In the RE@Agile Primer [Primer2017] we have identified four different purposes for requirements
documentation.

 Handling Functional Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 48 / 101

Let us consider the first two purposes:

a) Documentation for communication purposes: Effective and efficient communication is an

important tool in agile methods because of its interactivity and short feedback cycles. In

practice, there are several situations that may hinder direct verbal communication: distributed

teams, language barriers or time restrictions of those involved. Furthermore, information is

sometimes so complex that direct communication may be inefficient or misleading. A paper

prototype or a diagram of a complicated algorithm can, for example, be re-read later on.

Sometimes stakeholders simply prefer written communication to reading source code or

reviewing software. In these cases, documentation facilitates the communication process

between all involved parties and the results of the process are stored.

The principle of creating documentation for communication purposes is: a document is created as an
additional means of communication if stakeholders or the developers see value in the existence of the
document. The document should be archived when the communication has been successful.

b) Documentation for thinking purposes: An often-forgotten aspect of writing a document is

that writing is always a means to improve and support the thought processes of the writer.

Even if the document will be thrown away later in the process, the benefit of improving and

supporting thinking is lasting. For example, writing a use case forces the writer to think about

concrete interactions between the system and the actors including, for example, exceptions

and alternative scenarios. Writing a use case can therefore be understood as a tool to test your

own knowledge and understanding of a system.

The principle for creating documentation for thinking purposes is: the thinker decides on the document
form that supports his or her thinking best. The thinker does not need to justify this decision. The
document may be discarded when the thinking process is finished.

For the first two purposes a product backlog with epics and stories (in whatever form (cards on the wall
or stories captured in tools) and maybe augmented with sketches, diagrams and prototypes) is sufficient
as documentation to support the progress of product development.

For the two other purposes, more formal requirements documentation must be considered.

c) Documentation for legal purposes: Certain domains or project contexts (for example

software in the health care sector or avionics) require documentation of certain information

(for example requirements and test cases of a system) to obtain legal approval.

The principle of creating documentation for legal purposes is: the applicable laws and standards
describe what legally necessary documentation has to be created. This documentation is an inseparable
part of the product.

d) Documentation for preservation purposes: Certain information about a system has a lasting

value beyond the initial development effort. Examples include the goals of the system, the

central use cases it supports or decisions that were made during its development, for example

to exclude certain functionalities. Documentation for preservation purposes can become the

shared archive of the team, of a product or of an organization. It can reduce the dependency on

the memory capacity of the individual team members and can help discussions about previous

decisions (for example “Why did we decide not to implement this?”).

The principle of creating documentation for preservation purposes is: the team decides on what to
document for preservation purposes.

For these two purposes the product backlog – which is a tool for the interaction of a Product Owner with
developers – is not sufficient. The good news is that documentation for legal purposes or for the
preservation of product requirements know-how does not have to be created upfront.

 Handling Functional Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 49 / 101

It can be updated and maintained every time a new version of the product is released, for instance after
the successful implementation of features. Thus, it only contains documentation of functionality and
qualities that really made it into the product – avoiding time-consuming version and configuration
management activities on documents while stakeholders are still negotiating and maybe changing their
opinions.

Defining an adequate degree of documentation depends on many factors like the size of the projects, the
number of stakeholders involved, legal constraints, and/or safety-critical aspects of the product. Based
on these factors, agile teams try to avoid documentation overkill and find a minimum set of useful
documentation.

While working with a “living” product backlog is an efficient way to handle documentation, it is not
always sufficient. A structured up-to-date documentation of all requirements implemented in a product
may not only be a legal constraint in some projects but also a perfect starting point for quicker
identification of change requests based on existing documentation.

3.7 Summary

Whatever your stakeholders tell you about required functionality is the right starting point for
requirements work. But it is the starting point only. Your job as Product Owner is to bring structure into
these functional requirements.

Epics, themes, features or large stories (representing potentially complex business processes) are a
good way to keep a big picture, an overview of all the things that your stakeholders want from a system
or a product. But you have learned that – by definition – they may not be precise enough to stop at that
level.

Your goal for good requirements work is to come up with user stories, that fulfill the definition of ready,
or the INVEST criteria: they should be independent and valuable, small enough to fit into one iteration,
estimable and equipped with testable fit criteria. Mike Cohn’s template “As a <user> I want <some
functionality> to achieve <some goals>” is a good starting point, but you should not insist on using this
formula in all cases.

If a requirement is still too large to fit into one iteration you have learned several tactics to split them,
while you still try to preserve independence and value as much as possible.

 Handling Quality Requirements and Constraints

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 50 / 101

4. Handling Quality Requirements and Constraints

Chapter 3 focused on handling Functional Requirements. Dealing with Functional Requirements,
meaning finding out what functionality the various stakeholders need, will be the most time-consuming
activity in system development and it will dominate most discussions between Product Owner,
stakeholders and the developers.

Qualities of (the functions of) the system, like performance, user friendliness, robustness and
extensibility are often taken for granted. Users and/or other stakeholders often assume that they do not
have to be stated explicitly since the developers already know about them.

The same is true of organizational and technical constraints. Doesn’t everybody know that we have a
standard process model, requiring certain artifacts to be produced? Isn’t everybody aware that we
always use company X to buy our database systems, and of course will code in language Y?

Requirements Engineering experts have asserted the importance of these “non-functional”
requirements for decades. Even though the term “non-functional requirements” is still often used in
practice, as an umbrella term for quality requirements and constraints, IREB uses the more concrete
and precise categories “Quality Requirements” and “Constraints”, according to [Glinz2014].

Figure 12: Categorization of requirements

Figure 12 shows the three categories of requirements and some of their important relationships. A
quality requirement will never stand-alone, meaning that it will always refer to one or more - or even
all - functional requirements. Constraints are either product constraints, constraining the design of a
function or a quality, or process constraints, restricting the work of the developers in a way that is not
directly linked to the product itself, for instance certain process steps have to be performed or certain
artifacts have to be created.

Initially quality requirements and constraints are often deliberately vague. In the next chapters we will
describe how to capture such vague qualities and constraints. You will also see how to transform vague
quality requirements and constraints into more precise requirements (down to the level of specifying
precise acceptance criteria) and how to handle them in conjunction with functional requirements.

 Handling Quality Requirements and Constraints

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 51 / 101

4.1 Understanding the Importance of Quality Requirements and Constraints

[Meyer2014] expresses the concern that “many agile methods concentrate on functional requirements
only and do not put enough emphasis on qualities and constraints”. Bertrand Meyer goes on to say: “Key
constraints and some categories of qualities envisaged for the system should be made explicit early in
the lifecycle of a product, since they determine key architectural choices (infrastructure, software
architecture and software design). Ignoring them or learning too late in the project may endanger the
whole development effort. Other qualities can be captured iteratively, just in time, as with functional
requirements.”

While there are many categories of quality requirements to be considered, the task is made somewhat
easier for Product Owners by a number of published categorization schemata – or checklists – such as
those shown in the two following examples. As a Product Owner you should simply use one of these
“cheat sheets” to ask explicit questions about these qualities. Even better: based on the available
checklists you can create your own checklist to emphasize the qualities that are most important in your
domain.

In 2011 ISO published a new quality standards family, replacing the well-known ISO/IEC 9126 quality
model from 2001. The most important standard for Requirements Engineering is [ISO25010], defining
quality requirements. Its latest update is from 2017. Figure 13 shows the eight top-level quality
characteristics of systems and their decomposition into sub characteristics. Note that the standard does
not talk about requirements, but about system qualities. Adding the word “requirements” to each
category allows you to discuss your needs in this area, for instance “capacity” becomes “capacity
requirements”.

Figure 13: Categories of qualities according to ISO25010

Detailed definitions of all these categories can be found in the standard. In addition to the generic quality
model the ISO/IEC 25012 standard contains a complementary model for data quality.

A similar categorization scheme for quality requirements can be found in the VOLERE template
[RoRo2017]. Chapters 10 – 17 of this template describe categories of quality requirements. The
categorization is based on decades of experience in system specification. The original template adds the
word “requirements” to every category, i.e. “longevity” reads “longevity requirements”. In Figure 14 we
have skipped this addition to keep the categories more readable.

 Handling Quality Requirements and Constraints

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 52 / 101

Figure 14: Quality categories of VOLERE

In [RoRo2013] you will not only find definitions of all these categories, but also the reason why they are
important. You will also find examples of how to formulate them including acceptance criteria.

The following example is taken from http://volere.co.uk/template.htm [RoRo2017]. Note that
acceptance criteria are called fit criteria in this publication.

11c. Learning Requirements

Content

Requirements specifying how easy it should be to learn to use the product. This learning curve
ranges from zero time for products intended for placement in the public domain (for example a
parking meter or a web site) to a considerable amount of time for complex, highly technical
products.

Motivation

To quantify the amount of time that your client feels is acceptable before a user can successfully
use the product. This requirement guides designers in understanding how users will learn the
product. For example, designers may build elaborate interactive help facilities into the product or
the product may be packaged with a tutorial. Alternatively, the product may have to be
constructed so that all of its functionality is apparent upon first encountering it.

Examples

The product shall be easy for an engineer to learn.

A clerk shall be able to be productive within a short time.

The product shall be able to be used by members of the public who will receive no training before
using it.

The product shall be used by engineers who will attend five weeks of training before using the
product.

http://volere.co.uk/template.htm

 Handling Quality Requirements and Constraints

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 53 / 101

Fit Criterion

An engineer shall produce a [specified result] within [specified time] when beginning to use the
product, without having to use the manual.

After receiving [number of hours] training a clerk shall be able to produce [quantity of specified
outputs] per [unit of time].

[Agreed percentage] of a test panel shall successfully complete [specified task] within [specified
time limit].

The engineers shall achieve [agreed percentage] pass rate of the final examination of the training.

Suggestions for Exercise:

Discuss for some of the categories shown in Figure 13 or Figure 14 whether the developers should
know about these requirements early on or if they can be considered later in the development process.

4.2 Adding Precision to Quality Requirements

Quality requirements have to be communicated to the developers in a way that is both unambiguous
and testable. As mentioned earlier, quality requirements are often very vague at the beginning. For
example: The new mobile phone generation shall be attractive to teenage kids.

This quality requirement is neither unambiguous nor testable (in the way it is expressed), but might
nevertheless be the starting point for discussions about more detailed qualities required for the next
generation of mobile phones.

Its precision (or rather lack of) can be compared to a functional epic like “As a mobile phone user I want
intelligent dialing capabilities”. In chapter 3 we discussed how to bring such an epic to the level of
precision allowing for the developers to implement it.

In this chapter we will do the same for quality requirements. We will first explain how to make quality
requirements more concrete, down to the level of having acceptance criteria. Then –in chapter 4.3- we
will describe how and where to (physically) record or store them.

There are two ways of adding precision and clarity to vague quality requirements. You can either detail
or decompose them, or you can derive more precise (functional) requirements from the original
requirement. Figure 15 graphically shows these alternatives.

Figure 15: Detailing and decomposing quality requirements

 Handling Quality Requirements and Constraints

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 54 / 101

Detailing or decomposing takes the original vague quality requirement and replaces it with two or more
detailed quality requirements.

Example: Looking at the categorization schema in Figure 14, you could detail the usability requirement
(VOLERE category 11) “The system should be user friendly” with the following two requirements:

 As a user I want the system to be easy to learn (VOLERE category 11c), and

 As a user I want the system to be easy to handle (VOLERE category 11a).

These two are still vague but already more precise than the original one.

The second alternative “deriving” means to transform the original quality requirement into one or more
(functional) requirements.

Take for example the original requirement: “As security officer I want the access to the following functions
restricted to authorized personnel.”

Deriving more precise requirements means for example deciding that a login mechanism with user
name and password will be used to restrict the access.

Note that the original intention of the quality requirement was just to secure the access to certain
functions. It is a design decision to achieve this by introducing roles and passwords. You could come up
with other ideas, like locking away the computer in a room to which only authorized persons have
access. Alternatively, you could decide to use fingerprints to identify authorized users.

If you derive new functional requirements from original quality requirements you might want to keep
the original requirement, for instance to remember its origin, in case in future versions of the product
you discover more clever ways to achieve the original quality. Deriving new functional requirements
from required qualities brings you closer to a solution or a fulfillment of that requirement.

Suggestions for Exercise:

Pick one of your products and refine some examples of quality requirements.

Quality trees [Clements et al.2001] are also a proven way to structure quality requirements. A
quality tree combines the two techniques mentioned above. Figure 16 shows the generic form
of a quality tree. It starts with a root labeled “specific quality”. The next branches of the tree
are categories of qualities, followed by subcategories. The leaves of the tree show concrete
scenarios for a category or subcategory, for instance functional requirements or testable
quality statements.

 Handling Quality Requirements and Constraints

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 55 / 101

Figure 16: A generic schema for a quality tree

For our case study iLearn Figure 17 shows excerpts from a quality tree. Note the following points:

 The leaves may still not be precise enough to be tested, for example: “usable without training

of students”. That is why quality requirements need acceptance criteria to inform the

developers about the expectations of the Product Owner.

 There is a very clear business decision in the requirement for “other languages”. The Product

Owner, together with all stakeholders, has decided that subtitles are sufficient for marketing

the product in other countries, rather than, for example, dubbing the videos.

 There is even a design suggestion in the “adaptability” requirement: instead of just asking that

the system should work on various kinds or devices with different resolutions, the Product

Owner requests use of the corporate standard technology: responsive design.

 Handling Quality Requirements and Constraints

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 56 / 101

Figure 17: Parts of a quality tree for iLearn

Suggestions for Exercise:

Try to brainstorm on a partial quality tree for one of your products. Make sure that you have very
concrete scenarios as leaves!

As mentioned earlier, quality requirements also need acceptance criteria to add more precision. The
type of acceptance criteria used will depend on the category of the quality. The following table shows
systematic advice on how to formulate acceptance criteria for different VOLERE categories of qualities.

Req. Type Suggested Scale

10 Look & Feel Conformance to standard - specify who/how this is tested

11 Usability Amount of learning time

Amount of training

Test panel can perform functions in target time

12 Performance Time to complete action

13 Operational Quantification of time/ease of use in environment

14 Maintainability Quantification of portability effort

Specification of time allowed to make changes

15 Security Specification of who can use the product, and when

16 Cultural & Political Who accepts, quantification of special customs

17 Legal Lawyer’s opinion / court case

The following chapters provide examples of acceptance criteria for quality requirements. More
information can be found in [RoRo2013].

Usability Requirement: The product must be useable by a member of the public, who may not speak
English.

 Handling Quality Requirements and Constraints

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 57 / 101

Acceptance Criterion: 45 out of 50 randomly selected non-English speakers must be able to use the
product within the performance criteria plus 25%.

Performance Requirement: The product must be acceptably fast.

Acceptance Criterion: Each transaction at the vending machine must take no more than 15 seconds.

Operational Requirement: As a worker I have to use the product also when outside in cold, rainy
conditions.

Acceptance Criterion: 90% of workers in the first month of use must successfully use the product within
the target time constraints.

Security Requirements: Only direct managers may see the personnel records of their staff. Personnel
records of staff may not be viewed by anyone else.

Acceptance Criterion: Recording the accesses and testing to see if a non-manager had access.
Alternatively, you might say that the product must be certified as conforming to the xyz-security
standard.

Legal Requirement: Personal customer information must be used in accordance with the Data
Protection Act.

Acceptance Criterion: The legal department must agree that the product conforms to the organization’s
data protection registration.

Suggestions for Exercise:

Pick two examples of quality requirements and add acceptance criteria to them.

4.3 Quality Requirements and Backlog

We discussed how to discover and elicit quality requirements and how to make vague quality
requirements more precise. Now we will discuss how to document them in an agile environment in
conjunction with a product backlog containing mainly functional requirements. Depending on the kind
of quality requirement, one or other of the following approaches will work for you.

The easiest way to record a quality requirement is to attach it directly to a backlog item. This approach
only works if the quality is unique to that one feature or user story.

A second approach is to record quality requirements outside the backlog, either:

 On separate cards;

 As a quality tree.

In both cases you have to link them to all the relevant functional requirements. Depending on the tools
you use this may be done either using hyperlinks, or you have to explicitly enumerate the functional
requirements targeted by each quality.

The third alternative is to put quality requirements in the definition of done. Since the rules in the
definition of done apply to ALL iterations, you are indicating that you always want that requirement to
be obeyed, independent of which functional requirements you attach to the next iteration.

4.4 Making Constraints Explicit

Constraints are an important type of requirements. Glinz defines constraints as requirements that limit
the solution space beyond what is necessary for meeting the given functional requirements and quality
requirements [Glinz2014]. The product must be built within the constraints. Constraints restrict what
you are allowed to decide and thus influence and shape the product.

 Handling Quality Requirements and Constraints

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 58 / 101

They are either determined by your management or by other stakeholders outside your scope of control,
for example regulatory authorities, your parent company or an enterprise architect.

Note that while many constraints are certainly legitimate, it is often worthwhile for the Product Owner
or developers to check their validity and to negotiate with persons or organizations that put such
constraints on your development; to question their reasons and motivations.

Sometimes you will discover that some of the constraints are pure folklore that – once you question
them and suggest alternatives - can be negotiated with the responsible stakeholders and relaxed,
allowing more flexibility in the implementation. So, in agile terminology: Constraints may also be
negotiable, in the same way as functionality. However, if the other parties insist on these constraints,
then the developers have to accept them.

In this Handbook we have included legal requirements or (more general) any kind of compliance
requirements as categories of quality requirements (see chapter 4.1). They could as well be included in
this chapter on constraints since any solution has to have these qualities. Compared to the other
categories of constraints such compliance requirements are often non-negotiable.

Figure 12 shows one way to categorize constraints: They can be classified either as product constraints
or as process constraints. Only product constraints refer to functional or quality requirements of the
product, thus limiting their implementation. Process constraints have no direct relationship to the
product. They put limits on the organization that develops the product, or the development process used
for the development of the product. Thus, they have only an indirect effect on the product itself.

Figure 18 suggests some sub-categories for these two categories. Some examples are discussed in the
following text. More details about how to formulate such constraints, and more examples, can be found
in [RoRo2013].

The product constraints may ask for a given infrastructure, meaning a technological and/or physical
environment in which the product is to be installed. Other examples include the mandatory use of off-
the-shelf software (meaning a buying decision as opposed to developing sub-systems within the
project).

Figure 18: Categorization of constraints

 Handling Quality Requirements and Constraints

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 59 / 101

The constraint to reuse existing components or sub-systems of predecessor products or other products
the company developed is one that is often introduced. The reason for reuse is obvious: you don’t want
to spend money if you have acceptable (partial) solutions at your disposal.

Constraints concerning the anticipated operational environment of the product describe any features of
the workplace that could have an effect on the design. Product designers should know, for example, that
the workplace is noisy, so audio signals might not work.

Conversely, where the product is intended to operate in quiet environments, the noise level produced
by the product should not exceed a certain level of decibels. If the workplace is in the open air where it
could be wet and cold, then users should be able to use the product wearing gloves.

Similar for systems involving hardware elements, physical constraints such as those related to the size
or weight of the device – think mobile phones or other handheld devices – may also be very relevant
(meaning relevant to both the hardware design and to the software which it is able to support).

The most common product constraints, however, limit the technology that the developers are allowed
to use.

For example:

 As enterprise architect, I want you to develop the product in C# so that our existing staff can

maintain the product.

 As database administrator, I want the product team to use ORACLE since we have excellent

hotline support for this product.

Note that you don’t have to write constraints as stories. It may be sufficient to inform the team that C#
and ORACLE are non-negotiable constraints.

Process constraints are often called organizational constraints, since they constrain either management
aspects like budget, schedule or the skills of team members available for the project (“You have to work
with this team. We have no budget to hire additional staff and no budget for external people. ”) or they
enforce certain policies and regulations. You might have to follow a development process that prescribes
certain roles, mandatory activities to be performed during development and a set of documents or other
artifacts to be produced and maintained.

Constraints, like other types of requirements, have a description: they can contain a rationale or
motivation describing why the constraint is in place. And they should also have acceptance criteria –
just as for functional or quality requirements.

If you have worked in an organization for some time, you are likely to have learned about the
technological preferences in the organization and you will be aware of organizational rules and
constraints. Nevertheless, it is important to make such constraints explicit so that everyone else in the
team is aware of them. The most limiting ones should be known early in the project. Others should be
captured as soon as they are discovered.

Such constraints are normally applicable to a wider range of projects. Basic technology stacks, as well
as process models, are normally set for a longer period in a company. So as soon as these constraints
are captured, they can easily be reused in different product developments.

4.5 Summary

Quality requirements and constraints are as important for project success as functional requirements.
For a Product Owner it is not difficult to find relevant requirements in these categories since there are
many checklists available in the public domain, suggesting categories for qualities and constraints.

Quality requirements may start out vague. Before being ready for development they have to be made
more precise, down to the level of acceptance tests – just as for functional requirements.

 Handling Quality Requirements and Constraints

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 60 / 101

Adding precision to quality requirements is often achieved by deriving corresponding functional
requirements that fulfill the originally required qualities. Make sure such decisions are recorded, and
that the original quality requirements are not discarded, since over time you might discover better ways
to fulfill the qualities.

Some quality requirements can simply be attached to already discovered user stories, for example
adding performance or special security aspects to individual functions. Many quality requirements
concern crosscutting aspects, meaning they are relevant to many of the functional requirements.

For those we suggest that you maintain a separate list, always visible to the developers, since they must
always be fulfilled. An alternative is to include them in the definition of done, which has the same effect
of being always valid.

A similar approach can be taken for technical, organizational and legal constraints. Make sure they are
explicitly known to the developers. If they are not project specific, but more general company rules, you
can maintain them in a central location for all projects thus reusing them over many development
projects.

 Prioritizing and Estimating Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 61 / 101

5. Prioritizing and Estimating Requirements

Agile approaches aim to maximize the overall business value over time and to permanently optimize the
overall business value creation process [Leffingwell2010]. This constant value adding process is shown
in Figure 19. Every iteration should result in added value – sometimes more, sometimes less.

Figure 19: Agile development = constant value creation

Every iteration is supposed to deliver a potentially releasable product increment that increases the
value of the overall product. (Comment: some versions of Scrum and other agile approaches refer to a
“potentially shippable product” or “potentially usable product increment”).

[LeSS] explains this goal as follows: “Potentially shippable is a statement about the quality of the
software and not about the value or the marketability of the software. When a product is potentially
shippable then it means that all the work that needs to be done for the currently implemented features
has been done and technically the product can be shipped, but it doesn’t mean that the features
implemented are valuable enough for the customer to want a new release. The latter is determined by
the Product Owner.”

When planning for and achieving this constant addition of value, all requirements (whether coarse or
fine) should be ordered primarily based on the added value they can bring to the business. But business
value can mean many different things to different organizations. Clarifying this term “business value” is
one of the core topics of this chapter and will be discussed in chapters 5.1 to 5.3.

Of course, creating value has to be balanced with the effort to create it and the moment in time when
the value will be delivered. Therefore, the developers have to support the Product Owner with estimates
about the efforts needed to create the business value. Estimating backlog items is the second core topic
of this chapter and will be discussed in chapter 5.4. Based on the value/effort ratio the Product Owner
can select the stories that should be taken on by the developers in the next iteration.

5.1 Determination of Business Value

As mentioned above “value” can mean many different things in different environments. Here are some
aspects to be considered when establishing business value and when putting the backlog items in order
by that value.

 Value to the customer or other stakeholders

If you develop a product for a specific customer or client, the opinion of this client about
what is more important and what is less important will definitely influence when you
pick backlog items. Not every stakeholder will consider money as a criterion for value.
Value for Greenpeace for instance could be anything good you do to protect the
environment. So, whatever your customer or important stakeholder values most will be
considered.

https://less.works/less/framework/product-owner.html

 Prioritizing and Estimating Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 62 / 101

 Value to the organization

Despite having specific clients that will use or buy the product the organization itself
might (or should) have strategic goals it wants to achieve, for instance create a reusable
platform for a given domain, so that future individual projects can be delivered quicker
and cheaper. In fact, any kind of optimization and automation of internal business
processes can be a driving force for creating value for the organization. If the backlog
items are strongly related to such strategic goals, then their business value will be
considered as very high.

 Threat to existence

Not having or offering a certain feature or functionality can be a threat to the product or
the overall organization. Typical examples of such threats are legal requirements (for
instance data protection). Such a feature may not add business value in a commercial
sense, but it must be implemented to ensure to the further existence of the product or
the company.

 Expected financial value of a feature (sales volume, total revenue, return on investment)

Most commercial organizations’ goal is to make money (profit). So, features and stories
will naturally be ranked higher if they promise more sales or a quick return on
investment.

 Short-term project goals or release goals (versus mid-term product goals)

Sometimes it is important to be able to demonstrate features or at least mockups of
features at an upcoming trade show or an important presentation. Therefore, Product
Owners may value such results more than those that contribute to the longer-term
product strategy. On the other hand, an organization may want to invest in a
development framework that does not immediately create business value but reduces
long-term development costs and improves the value-add ratio for upcoming product
increments.

 Costs of delay

This is a very interesting criterion to use for determination of business value. The key
question is: What is the cost of a delayed shipping of a story? For example, a new feature
of an online shopping portal is supposed to increase sales volume by $500,000 per
month means that the company looses $500,000 if the feature is delayed for one month.
Reinertsen [Reinertsen2008] considers cost of delay as a point of view that can
summarize all the other aspects mentioned in this chapter.

 Time to market

Certain features may come with a window of opportunity. For example: If this feature is
available within this period, then it will create a significant increase in business. If it
comes too late the value might be significantly lower. For example, trade shows are a
good opportunity to sell new products to the market. If the product is not ready when
the trade show opens, then the customers may buy another product and will have no
need to buy the product in the near future even if the product has more and better
functionality. Some methods therefore suggest putting an attribute on each backlog item
specifying “best before”. This way every stakeholder explicitly knows about the window
of opportunity.

 Prioritizing and Estimating Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 63 / 101

 Requirements frequency

If you develop a product for a mass market it may be important to get an understanding
of the demand when determining the business value. Did many customers ask for it? Or
was it just a small group? How much revenue do you expect to make based on the
number of customers that requested the feature?

 Business dependencies and technical dependencies

Sometimes you have to prioritize a backlog element because it is a prerequisite for one
or more other backlog items, meaning the other items cannot be developed if this one is
not available. An example in the iLearn case study would be: the development of a user
account does not create business value, but you cannot develop personalized features if
you have not yet developed the user account feature. These dependencies could also be
technical dependencies, for instance developing a feature requires the establishment of
a certain infrastructure or certain tools have to be bought and explored before you can
deliver the feature. These prerequisites (features) will not create business value, but
without having these prerequisites done, you cannot develop the really valuable backlog
items.

Also, some of the qualities might be considered to have high value. You might prioritize backlog items
that for instance:

 Improve usability;

 Improve robustness;

 Reduce maintenance costs;

 Minimize impact on the current system.

Working on such quality improvements does not often create new sellable features, so they don’t create
direct revenue. But they may be considered to be very important by certain groups of stakeholders and
therefore be high in the ranking of backlog items.

The delivered value can only be measured on the side of the end user because the end user of the product
will decide if they want to use (and buy) the product and if they will recommend the product to other
potentially customers. As a result of this the revenue of the producing company may increase.

If the customer is internal there is no revenue to measure so typically the value of the delivered product
increments is determined by rating the delivered product increment and the resulting product version
sprint by sprint and comparing it to the product roadmap based on the planned and delivered features
and product capabilities.

5.2 Business Value, Risk

An important criterion to prioritize backlog items is that some are riskier than others.

[DeMaLi2003] gives a cyclic definition of risks and problem:

 A risk is a potential problem.

 A problem is a risk that has manifested itself.

There are many categories of risks in product development. The feature itself could be risky, because
for example it may not be accepted by the target audience. The risk could be in the implementation of a
feature, for instance if the team wants to use certain technology whereas not all team members are
proficient with the technology.

 Prioritizing and Estimating Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 64 / 101

Or the risk could be in the technology itself, which may be too new (and therefore dangerous to use) or
too old or outdated. For a comprehensive overview of risks, especially the five main risks that impact
every IT project, we refer to [DeMaLi2003].

Maybe the risky backlog items don’t deliver high business value based on the criteria defined in the last
chapter. But if you want to handle the risks in order to avoid surprises later on, then you may want to
pick backlog items that come with a risk early on in the development process. Once you dealt with those
items the rest of the work is less risky.

There are four alternatives you can choose from when you have risky backlog items:

1. Avoid the risk: This means not handling backlog items that are risky. Avoiding such items implies
missing out on the opportunities associated with the items. So avoiding should not be your
choice in dealing with risky items.

2. Mitigate risks: As a manager you can put money and/or time aside to handle risks as soon as
they become problems. As a Product Owner (responsible for Requirements Engineering) you
may therefore postpone the detailed study of such items until they become important for the
business.

3. Reduce risks: besides mitigation this is your second obvious choice to deal with risky items. But
this means to take actions now in order to reduce the risk. You typically break down a risky item
into smaller items (for example spikes) that allow you to learn more about their risky parts. For
instance, you develop a UI-prototype to ensure that the target audience will accept it, or you
develop a prototype to gain experience with a new framework.

4. Hope that the risk does not turn into a problem. Similar to the first alternative this is not a
feasible choice. Imagine that you have twelve risks with a probability of only ten percent each.
Mathematics shows that the chance that one of these will hit you is already 75 percent.

As a Product Owner you only want to go for alternatives two and three. From a requirements point of
view alternative three is the most important one. You have to find ways to decompose a requirement in
a way that reduces the risk. Sometimes you might study a spike or develop a prototype to reduce the
risk before moving towards actual feature development.

[DeMaLi2003] concludes: “The real reason we need to do risk management is not to avoid risks, but to
enable aggressive risk-taking.”

Suggestions for Exercise:

Discuss what (combination of) criteria are used in your organization to determine (business) value.

5.3 Expressing Priorities and Ordering the Backlog

Once you have determined what value means to you, you have to express these priorities and order the
backlog according to the priorities given to the backlog items. There are many different methods to
assign value to backlog items, some of them very simple, others highly complex. In the following chapter
we will discuss popular approaches.

One method is to use MoSCoW. This prioritization method was developed by [ClBa1994] to reach a
common understanding with stakeholders on the importance they place on the delivery of each
requirement. The term MoSCoW itself is an acronym derived from the first letter of each of four
prioritization categories (Must have, Should have, Could have, and Won't have), with the interstitial o‘s
added to make the word pronounceable.

 Prioritizing and Estimating Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 65 / 101

The categories are typically understood as:

 Must have: Requirements labeled as Must have are critical to the current delivery time box in

order for it to be a success. If even one Must have requirement is not included, then the project

delivery should be considered a failure (note: requirements can be downgraded from Must

have, by agreement with all relevant stakeholders; for example, when new requirements are

deemed more important).

 Should have: Requirements labeled as Should have are important but not necessary for

delivery in the current delivery time box. While Should have requirements can be as important

as Must have, they are often not as time-critical or there may be another way to satisfy the

requirement, so that it can be held back until a future delivery time box.

 Could have: Requirements labeled as Could have are desirable but not necessary and could

improve user experience or customer satisfaction for little development cost. These will

typically be included if time and resources permit.

 Won't have (this time): Requirements labeled as Won't have have been agreed by stakeholders

as the least-critical, lowest-payback items, or not appropriate at that time. As a result, Won't

have requirements are not planned into the schedule for the next delivery time box. Won't have

requirements are either dropped or reconsidered for inclusion in a later time box.

 Prioritizing and Estimating Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 66 / 101

A simpler schema for expressing priorities could be to use three categories (instead of the four of
MoSCoW), labeled H(igh), M(edium) and L(ow) or alternatively A, B and C.

Figure 20: MoSCoW or high/medium/low priorities

Figure 20 shows a backlog where the items are annotated with high, medium and low or MoSCoW. Note
that the higher the value given to the requirement the more detailed it should already be described,
since it is a potential candidate for the next (or one of the next) iteration(s).

Some companies use a range of numbers between 1 and 100, interpreting it in a way that a higher
number means more business value. Thus, you can express bigger differences for instance by giving
priority 87 to one backlog item and 38 to another, clearly indicating how much more important the item
with priority 87 is.

Figure 21 shows a range of numbers given to smaller or larger backlog items. Note, that if a mid-sized
item has value 95 or a large epic has value 76 like in the figure below this is a clear message to the
Product Owner to start working on that item to bring it to the definition of ready, so that such important
items can be handled in a near-term iteration.

 Prioritizing and Estimating Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 67 / 101

Figure 21: Using a range of numbers to indicate business value

The simplest way would be to sort all backlog items in a linear sequence (that is putting story cards in a
row from left to right). The further left the more important the backlog item is considered to be. The
further right you put it, the less important this item is considered to be. This is shown in Figure 22.

Figure 22: Linear sorting by business value clusters

Note that only the leftmost items have to be clearly linearized since the developers will pick them for
the next iteration. The further to the right an item is placed, the less important is its exact position. So,
you can put clusters of items on stacks without explicitly deciding their exact value.

The Product Owner has time for refinement before they are picked for implementation. Do the sorting
from left to right quickly and only concentrate on those items that promise high business value.

 Prioritizing and Estimating Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 68 / 101

Of course, you could apply much more complex algorithms to determine value. You can for instance pick
a couple of criteria mentioned in chapter 5.1 and assign a weight to each of them for balancing the values
relative to each other. You can then individually rank product backlog items within each criterion and
calculate the resulting value. Figure 23 demonstrates this with three criteria and a ranking from 0 to 5
within each criterion. As you can see Story 3 turns out to be the most valuable one based on that
combinatorial approach of revenue, risk and usability.

Figure 23: Calculated business value based on multiple criteria

5.4 Estimating User Stories and other Backlog Items

For the Product Owner this chapter is for information only. He or she is only responsible for determining
the order of the backlog items based on value and risk as discussed in the last chapter. It is the task of
the developers to come up with estimates for each backlog item. The Product Owner should not
influence the estimation process, only be aware of the results.

Even in a perfect agile world, forecasts are useful and valuable (if applied properly) in order to
determine how much work can be “done” within a previously specified iteration (time box). No non-
estimated element is allowed to enter a sprint in Scrum for two reasons [Cohn2006]:

1. It is not clear if the element can be completed within the sprint and as a result of this the software
may not be working at the end of the sprint.

2. Without discussion and estimate, the team will have no reference point (planning vs. actual
doing) for future learning with regard to upcoming sprints.

Most people dislike estimating. In many non-agile organizations inaccurate estimates were typically
used against you at a later stage. If your estimate was too high, then you might be seen as too defensive
or too anxious. If your estimate was too low, then you could be challenged why you didn’t see the real
efforts behind the work that had to be done.

Agile organizations try to overcome this dislike by establishing a different kind of estimation culture. A
culture that helps avoiding finger pointing. The principles of this culture will be discussed in this
chapter.

First and foremost, reason for having better estimates is the use of short iterations in agile development.
It is much easier to give more precise estimates for the next two to four weeks compared to estimates
for quarters or for years.

 Prioritizing and Estimating Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 69 / 101

Of course, development organizations that work on large projects with multiple teams also need
forecasts in order to prioritize and plan work properly. Large scale estimating and planning will be
discussed in more detail in chapter 6. In this chapter we will concentrate on short-term estimating, for
example estimates for the next couple of iterations.

Agile methods suggest some good practices that help to have better and more accurate estimates:

1. Everyone involved in the estimation process must have the same understanding of the work that
needs to be “done”. This is achieved by involving the developers in the product backlog
refinement. Developers assist the Product Owner in refining unclear epics features and stories
or any kind of requirements on those levels of granularity, thereby gaining more insight into the
work to be done. Creating such a common understanding of what “done” really means in this
context avoids typical estimation pitfalls (forgetting about efforts needed for documentation,
testing or rollout preparation).

2. Estimating is done by those doing the work; the cross-functional developers. This helps to bring
all involved people on the same level of knowledge by exchanging knowledge and sharing
assumptions about the work to be done. Of course, you have to consider a tradeoff between
involving all team members in the estimation process and involving only some of them.
Involving all means everyone is part of the process and therefore feels committed to the
outcome. But this might take a lot of time that could otherwise be spent on developing features.
If only a few developers participate in the estimation process, then the others may not feel
committed. A good practice is to invite the whole team and let the team decide who is really
needed to estimate. In all cases estimating should be done by groups and not by individuals.
Later in this chapter we will suggest techniques to speed up estimating.

3. Estimating should be done relative to work already done or, in the beginning, relatively to small
work everyone involved can agree on. Estimating by analogy or affinity is likely to be more
accurate than absolute estimating. Looking at Figure 24 it is easy to state that the rock on the
right is more than twice the size compared to the rock on the left. It would be much harder to
estimate the exact size or weight of the two. Relative estimates offer enough precision for
planning.

Figure 24: Relative estimates

4. Estimating should be done using an artificial unit (usually called story points) representing
effort, complexity and risk in one. Using an artificial unit like story points is necessary to make
everyone familiar with the new way of estimating and the associated culture and move away
from the traditional behavior.

Several techniques support the relative estimate. The most well-known techniques are T-Shirt sizing or
the so-called Planning Poker [Cohn2006].

 Prioritizing and Estimating Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 70 / 101

For all of these techniques it is relevant to first agree on a reference item (or reference story). Let us
assume the apple in Figure 25 is the chosen reference. Now you can estimate the size of all other fruits
compared to that apple. Are they approximately of the same size? Are they much smaller? Or much
bigger?

Relative estimates remove the fear amongst the developers that they have to be exact.

The size indicators of T-shirts range from extra small to extra large (XXS, XS, S, M, L, XL, XXL). Some
methods suggest not using all of these size indicators when estimating because they may already be too
precise. Think of a subset XS, L and XXL as demonstrated in Figure 25. Of course, a cherry is larger than
a blueberry, but both are definitely smaller than apples or oranges. And melons are definitely bigger
than oranges, which are similar in size to apples.

Figure 25. Reduced T-Shirt Sizing

In Planning Poker, the developers estimate the backlog items based on a set of cards with numbers
inspired by the Fibonacci sequence, representing relative sizing (cf. Figure 26).

If you have agreed on one medium sized reference story, for example 5 story points, the team now
decides on the size of other backlog items with respect to the reference story. After everyone has
covertly selected a poker card they look at the values: if there are three “5” and two “3” on the table,
then the item is marked as a “5” and so on. If the numbers deviate from each other, then the team
members with the lowest and the highest estimate discuss the rationale behind their estimates and try
to convince the other team members. Then the next estimation round is started. If the team cannot agree
on one common value within three rounds, then the requirement is sent back to the Product Owner for
clarification.

For the upcoming iterations you may want to be in the range between 1 and 13. A “20”, “40” or “100” is
an indication for the Product Owner to refine that item. These numbers to not literally mean “20”, “40”
or “100”, but “too large”, “much too large” and “enormous” – but they are at least indicators for “how
much too large” compared to the items between 1 and 13. If the team has no understanding of the value,
then they should pick the “?” instead of expressing their fear by picking “100”.

Some sets include the “0” usually meaning: “Stop talking; this is not a relevant effort and it is not
worthwhile to include in the plan.”

 Prioritizing and Estimating Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 71 / 101

Figure 26: Planning Poker cards

The advantage of Planning Poker is, that it is a very good technique for new and inexperienced teams to
find their estimates because it avoids anchoring by single team members. The disadvantage is that it is
very time consuming. [Note: The book “Thinking, Fast and Slow” from D. Kahneman [Kahneman2013]
gives a great introduction into anchoring and other psychological effects related to thinking and
judgment.]

T-Shirt sizing or Planning Poker usually takes quite some time, since every backlog item is discussed
and estimated individually. To overcome this disadvantage improved techniques can be used by more
experienced teams.

One simplification of the Planning Poker technique is based on the same principles as Planning Poker
but uses a different way of determining the right estimate. Instead of every team member doing a
personal estimate one set of poker cards is spread across a table and the reference requirements are
placed in the corresponding “container” represented by the poker card. Afterwards the requirements
are selected by the team members in a round-robin approach where the team members are allowed
either to place a new requirement in the corresponding “container” or reassign one already placed
requirement in a different container. If one requirement is reassigned a number of times, then it will be
removed and send back to the Product Owner. This approach is much faster but needs a team that is
experienced enough to disagree with assignments done by other team members instead of easily
agreeing (“anchoring”).

The next step of evolvement is usually called “Affinity Estimation” or “Wall Estimation”. It is used when
estimating larger numbers of requirements for example for rough estimates in preparation of Release
Planning. Different to the previous approach, the requirements will not be assigned by round-robin
approach, but every team member receives a number of requirements and assigns it silently to the
“containers” represented by the poker card set (cf. Figure 27). After the silent assignment, all involved
are allowed to inspect the assigned requirements and mark those that are questioned. Usually this leads
to a quota of 20-30% requirements that need to be discussed and 70-80% that are accepted by all team
members.

 Prioritizing and Estimating Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 72 / 101

Figure 27: Wall Estimation or Affinity Estimation

Some final remarks about estimating:

Within one team the estimation process will change over time. The team will learn based on the results
of finished iterations and it will amend its definition of done to include more precise rules.

While relative estimates have many advantages and work well within one team (as discussed earlier)
there are some drawbacks when it comes to estimates across team boundaries. This will be discussed
in chapter 6 (Scaling).

Suggestions for Exercise:

Pick a case study and use a quick way to estimate the size of the backlog items. Discuss your findings,
especially discuss what did work and what did not work when estimating.

5.5 Choosing a Development Strategy

Different strategies can be applied when selecting what should be picked for early releases, based on
known value, risk and effort needed to develop a backlog item. Two concepts are typical for agile
development: developing a minimum viable product (MVP) and developing a minimum marketable
product (MMP).

Minimum Viable Product

A minimum viable product is the version of a new product that allows a team to collect the maximum
amount of validated learning about customers with the least effort. The term was coined by Frank
Robinson in 2001 and popularized by Steve Blank, and Eric Ries [Ries2011].

Gathering insights from an MVP is often less expensive than developing a product with more features.
Developing a product with more features will increase costs and risks if the product fails, for example,
due to incorrect assumptions.

The MVP is a key idea from the Lean Startup methodology developed by Eric Ries, which is based on the
Build-Measure-Learn cycle (see Figure 28).

http://startuplessonslearned.blogspot.com/2009/04/validated-learning-about-customers.html
https://en.wikipedia.org/wiki/Steve_Blank

 Prioritizing and Estimating Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 73 / 101

Figure 28: The “Build-Measure-Learn” cycle of lean development

So, an MVP is a learning vehicle, allowing you to test an idea by quickly giving your targeted stakeholders
something tangible that allows you to collect data from which you can derive insights into your target
market.

Roman Pichler [Pichler2016] observes that “The MVP is called minimum, as you should spend as little
time and effort to create it. But this does not mean that it has to be quick and dirty. How long it takes to
create an MVP and how feature-rich it should be, depends on your product and market. But try to keep
the feature set as small as possible to accelerate learning, and to avoid wasting time and money–your
idea may turn out to be wrong!”

The MVP is not necessarily a deployable software product. Sometime paper prototypes and clickable
mockups can be used to derive insights as long as they help to test the idea and to acquire the relevant
knowledge.

For the iLearnRE system an MVP could be just publishing intro and summary videos for each learning
goal to gain insights about user behavior and UI acceptance.

Minimum Marketable Product

The next step should be to create a minimum marketable product (MMP). It is based on the idea that
less is more: The MMP describes the product with the smallest possible set of features that addresses
the needs of the initial users (innovators and early adopters) and can hence be marketed. Studies have
shown that most of our software products contain many features that are never or very seldom used.
So, it seems common sense to concentrate on features that are popular for the majority of your
stakeholders and delay features that are not considered so popular. To discover these features is not
straightforward, but MVPs are an excellent way of achieving this goal. Maybe some of your MVPs are
throwaway prototypes created for learning purposes only. But if you do it properly you will develop
them in a way that they can be reused or morphed into the first MMP.

If you combine these two concepts you have a strategy that is shown in Figure 29. Develop a couple of
MVPs to test the market and get real data as feedback. Then decide on the minimal number of features
a product has to have in order to be useful for at least a key group of your stakeholders. Then you
continuously add features that promise more business value.

 Prioritizing and Estimating Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 74 / 101

Figure 29: Combining MVP and MMP

Risk Reduction

The development of MVPs is very close to the idea of a risk reduction strategy. Most often MVPs are
developed to reduce the risk of having the wrong features for your stakeholders. But you can also create
MVPs (or spikes) to reduce technical risks. It is better to fail fast (either in functionality or in technology)
than to develop a full-fledged product and then find out it is not successful in the market.

In our iLearnRE case study testing the performance of the planned video platform under load can be a
feasible early version.

Low Hanging Fruit or Quick Wins

The opposite of a risk-driven strategy is to go for Low Hanging Fruit first. Begin by publishing features
that are easy and quick to implement in order to create early business – earning some money that allows
you to invest in more complex features. But beware of postponing risky parts since they may ruin the
architecture of a product based on low hanging fruit.

The warning of Professor Kano

Professor Kano conducted studies about customer satisfaction in relation to features delivered. As
already included in the CPRE Foundation level syllabus you should be able to distinguish three
categories of requirements: basic factors (also known as dissatisfiers), performance factors (also known
as satisfiers) and excitement factors (also known as exciters or delighters).

Kano warns that every successful release of a product should include features from all three categories.
When you constantly only provide basic factors, your customers will not be very happy. You have to
include some performance factors, for instance features that customers explicitly ask for even if they
are not absolutely necessary. And you should also try to innovate by including features they did not ask
for but will delight them as soon as they receive them.

Creating such a mix of features for each release is difficult to achieve. This is the reason why you should
continuously test your markets with MVPs as mentioned above and gather real data before you moving
towards time-consuming and expensive feature development.

WSJF

Another interesting strategy for development is the Weighted Shortest Job First (WSJF) approach. It is
based on the ratio of the cost of delay and the effort estimated for development [Reinertsen2008].

𝑊𝑆𝐽𝐹 =
𝐶𝑜𝑠𝑡 𝑜𝑓 𝐷𝑒𝑙𝑎𝑦

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

Cost of Delay is much more than the benefit (business value) if the respective requirement will be
developed. It also includes the perspective what happens if the respective requirement will not be
developed (for instance loss of market share, contract penalties) or if the development of that
requirement will reduce the risk for the entire implementation (proof of concept) or open up a new
opportunity (for instance the use of frameworks which will lower the effort for development in the
future).

 Prioritizing and Estimating Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 75 / 101

WSJF can help determine which requirements (or which parts) should be developed first without
knowing all details exactly by just using the relations between the requirements regarding Cost of Delay
and Duration (development effort).

Figure 30: WSJF example

The table is constructed as follows:

 Fill the column with the items/requirements that shall be rated (in our example items 1 -

item 5)

 Fill the columns (except CoD) from left to right column per column:

o Business Value – which value is added if the item is developed?

o Time Criticality – which value is lost if the item will not be developed?

o RR (Risk Reduction) / OE (Opportunity Enablement) – how much risk can be reduced

or how much opportunities can be taken if the item is being developed?

 Find per column the element that has the LEAST value per column and assign it a “1”

 Rate all other items in the column as a factor in relation to the “1” (you can use any number,

but the usage of the Fibonacci sequence is a good practice)

 Calculate the CoD Value as a sum of the previous columns

 Calculate the WSJF as the ratio of CoD / Duration

The item with the highest WSJF ratio should be developed first followed by the item with the second
highest ratio and so on.

Using this approach typically means that big chunks will be developed later since big chunks normally
have a low ratio. So, the suggestion to the Product Owner is to split big chunks and identify those parts
that deliver high value for respectively low effort and further postpone the less valuable parts.

 Prioritizing and Estimating Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 76 / 101

5.6 Summary

Ordering the backlog is an iterative two-step process. As a Product Owner you will preorder the backlog
based on business value during the first step. You have seen various ways to define what business value
means in your organization. As a Product Owner you should not underestimate risks. Sometimes you
have to balance value with risk in order not to endanger your product development. Value can be
expressed on various scales like MoSCoW, or High, Medium and Low. Or you simply put all items in a
linear sequence based on their value. Then you don’t have to use numbers.

Step two is for developers to give you estimates for each backlog item. Agile has done many things to
make the estimation process less threatening:

 The right people (those that do the work) estimate.

 Estimating is done as a group exercise, not by a single person.

 Estimating should be done relatively; comparing the size and effort of items instead of giving

them an absolute value.

Various processes can be used to estimate, like T-Shirt sizing or using Fibonacci cards in Planning Poker.
To speed up the process Wall Estimation or Affinity Estimation can be used.

When the backlog items are small enough and well understood the estimates will be precise enough to
allow iteration planning. When the items are still too big or not fully understood the team will indicate
that with a higher value – giving a message to the Product Owner that such items need clarification
and/or refinement.

As soon as the items are estimated, the Product Owner might change the order of the backlog once more,
for instance exchange a group of cheaper items with one more expensive item.

Based on the determined value and the estimates a number of different strategies can be applied to
determine the sequence in which items should be assigned to iterations. Strategies like creating a series
of minimum viable products (MVPs), followed by a minimum marketable product (MMP) before adding
more and more features support the agile principle of deliver early and deliver often. But also harvesting
low hanging fruit or reducing risk early on, are feasible alternatives.

An organization may adopt a strategy of early business value gain, for example, if its primary goal is to
deliver a product early and establish market share. A strategy of early risk reduction may be preferred
if a supplier wants to avoid at all costs that a product is returned due to, for example, inadequate
performance or security.

 Scaling RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 77 / 101

6. Scaling RE@Agile

Requirements Engineering is easier for products that are small enough to be handled by a single team
at one location. All the chapters so far implicitly made that assumption: we have shown how the most
important requirements (i.e. the ones that deliver the highest business value) can be implemented by
that team without the need to distribute requirements among multiple (development) teams. When this
assumption no longer holds – that is, we need more than one team to achieve our business goals and
visions - we have to consider scaling our development.

In this chapter we discuss why product development must sometimes be scaled and why products have
to be developed by more than one team, whether at the same location or distributed geographically.
When scaling, the Product Owner of the overall product (as the role responsible for requirements
management) is likely to be more challenged with management aspects than with requirements aspects.
We will discuss that the two factors time to market and complexity (either functional complexity or
challenging quality requirements) justify and drive the scaling process. But organizational and technical
constraints will also influence the way we scale.

In this chapter we will cover the following aspects:

 What does scaling mean and how does it affect requirements and teams (chapter 6.1)?

 How do we (re-)organize the requirements and the teams in the large (chapter 6.2)?

 How are releases and roadmaps defined and used in long-term planning (chapter 6.3)?

 How are requirements validated in scaled environments (chapter 6.4)?

6.1 Scaling Requirements and Teams

We use the term scaling to describe a change in size, either of the system or the product, or of the number
of people involved.

Since around 2010, a number of different agile scaling frameworks have been developed to address
these issues. Among them are Nexus [Nexus Guide], SAFe [SAFe1] [SAFe2], LeSS [LeSS], Scrum@Scale
[S@S Guide], BOSSA Nova [BOSSANOVA], Scrum of Scrums [SofS], Spotify [Spotify2012], though more
exist. Scaling frameworks vary in their maturity level, the number of good practices, guidelines and
rules, and the degree of adaptability to the specific needs of an organization. We will not discuss each
framework in detail but will rather use them as examples, especially when they present alternative
approaches to handling requirements in the large.

In Figure 31 the driving forces for scaling are shown as well as the constraints which may be
encountered on the way.

 Scaling RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 78 / 101

Figure 31: Three dimensions that might trigger scaling

The first two dimensions in the figure above are:

 Time-to-market: One team would take too long to implement all the requirements needed for a

satisfactory product. In order to speed up the release you put several teams to work.

 Complexity of the product: The product domain or the technologies used for the

implementation are so complex that one team cannot handle all aspects. You therefore decide

to work with multiple teams, each focusing on different aspects of the product.

In both cases you are immediately confronted by the fact that you have to coordinate the work of more
than one team. This makes development harder compared to working with a single, collocated team.

There is a third dimension shown in the figure above:

 You might have to work with multiple teams for organizational or political reasons: you may

have people in different geographical locations or working across multiple companies, or

teams organized around particular specialist skill sets. We consider all of these aspects as

constraints that sometimes cannot be avoided, although we wouldn’t necessarily recommend

choosing these organizational structures where they are not already present. More about good

and bad criteria for team structuring in chapter 6.2.

Be careful, however, with scaling when it is not absolutely necessary: working with more than one team
always introduces communication and coordination overhead. So, if the reasons for scaling mentioned
above do not apply, you probably should not scale at all!

If, however, you do scale, two things will always be true: you will be forced to add hierarchy to the
requirements, and hierarchy to the organization. Coarse-grained requirements are needed when
discussing the product as a whole; fine-grained requirements will be needed in the teams implementing
some aspect of the product. And the teams themselves will need to organize their cooperation to
function successfully within a larger team.

How different scaling frameworks tackle these two aspects and what terminology they suggest for
hierarchies of requirements and hierarchies of teams is discussed in the following chapters.

 Scaling RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 79 / 101

6.1.1 Organizing large scale requirements

In chapter 3 we discussed the topic of requirements granularity and introduced the terms coarse-
grained requirements, medium-grained requirements and fine-grained requirements. We deliberately
chose this more general terminology as the scaling frameworks (and agile requirements tools) differ
significantly in the specific terms they use.

Hierarchical representation of requirements reflects one of the key ideas of the product backlog: coarse-
grained requirements can still be vague or imprecise until they (or parts of them) become relevant for
an upcoming iteration and therefore need more detail and precision. More fine-grained requirements
are thus elaborated, and a relationship is maintained to their larger parents. The resulting hierarchy
fulfils two purposes:

 It provides an overview of all known requirements.

 It allows for the selective detailing of those elements that are most likely to be developed soon.

Figure 32: Terminology for requirements at different levels of granularity in selected methods and tools

For the purpose of this handbook, IREB has chosen one of the more popular sets of terms for
requirements at different levels of granularity that contains three terms: Epics (for coarse-grained
requirements), Features (medium-grained) and User Stories (fine-grained).

Some scaling frameworks and tools do not give explicit names to the distinct levels of requirements, but
simply call them backlog items and allow their refinement until they are small enough to be
implemented in a single iteration.

Other tools start with a two-level approach, but then allow the number of levels to be extended.
Atlassian’s Jira, for example, uses epics and stories as standard, but allows this hierarchy to be extended
(recent versions suggest calling the largest requirements themes and the next level initiatives). LeSS calls
requirements at the level above the user stories features and at the largest level requirements areas.

The SAFe framework provides an extensive requirements meta-model [SAFeMDM] with four levels of
requirements and a strict naming scheme: epics, capabilities, features and user stories. Figure 33 shows
a simplified version of this metamodel. The distinction between the levels is not so much based on
content, but rather on size.

 Scaling RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 80 / 101

A story has to be small enough to fit into one iteration (or sprint); a feature must be small enough to fit
in one release. Capabilities and epics are so large that they will span more than one release (more about
release planning in chapter 6.3).

Note that on each level SAFe distinguishes business features - those that create business value - from
enabler features - the necessary architectural prerequisites without which the business value cannot be
achieved. We will discuss this distinction in more detail in chapter 6.2.3.

SAFe also uses specific terms for the acceptance criteria at different levels of granularity, as shown
below.

Figure 33: Requirements Terminology of SAFe

Though many of today’s agile requirements tools are not capable of handling the four levels of
granularity in this meta-model out-of-the-box, most of them provide the means to customize the
hierarchy.

In order to avoid lengthy discussions about terminology (and methodology wars among your teams!)
we suggest that you decide on an inhouse terminology for the levels of granularity you want to use and
then stick to that in every development project. Very often either the scaling framework or the tools you
use will dictate the terminology.

6.1.2 Organizing Teams

All scaling frameworks agree that …

 … regardless of the specific job titles responsibility is needed at every level in the organization.

 … work has to be properly coordinated among the teams.

Beyond these general points, however, concepts and terminology differ in specific approaches.

 Scaling RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 81 / 101

When Scrum is used for multiple teams, one technique often used to coordinate these teams is called
scrum of scrums. [SofS] The only difference to the work within one team is that each team assigns a
person (an ambassador) to represent them in coordination meetings that normally happen two or three
times per week. During the course of a project the team can nominate different people, picking the
person who can best represent them according to the topics being discussed.

Figure 34: Scrum of Scrums as a model for organizing requirements responsiblity

In addition to the general coordination of developers, the requirements hierarchy discussed in chapter
6.1.1 needs a corresponding hierarchy of requirements responsibility (Figure 34, right). Coarse- and
medium-grained requirements should be owned by somebody, refinement jobs should be assigned to
individual teams and dependencies among the teams should be identified.

The organization of roles at different levels of the organizational hierarchy differs between frameworks:
from basic democracy to clearly hierarchical structures.

Among the more democratic approaches are Nexus and BOSSA Nova. They do not suggest having PO
hierarchies. For those two frameworks the Product Owner is part of the team and the team decides how
to coordinate not only the development but also the requirements. Thus, Nexus comes close to the idea
of a scrum of scrums (i.e. self-organizing teams) with its Nexus Integration Team, which exists to
coordinate, coach, and supervise the application of Nexus and the operation of Scrum so the best
outcomes are derived. The Nexus Integration Team consists of the Product Owner, a Scrum Master, and
Nexus Integration Team members. But note, the Nexus Integration Team is not a decision-making
authority: similar to a scrum master of an individual team, the integration team mainly ensures that the
required communication takes place amongst the teams in order to solve shared problems.

An even more basic democracy is advocated by BOSSA Nova [BOSSANOVA]. Here, a sociocracy
[SOCIOCRACY] is proposed as the ideal form for the organization in the large. The teams select their
ambassadors to the coordination circle, and each coordination circle selects their ambassador to higher-
level coordination circles, and so on.

Other frameworks establish clearer requirements management structures with well-defined decision-
making authority. They often assign fixed job titles to the requirements coordinators on higher levels.
As we saw above with requirements hierarchies, the exact terminology used in the organizational
hierarchies also varies among the different frameworks. Figure 35. gives an overview of some of the job
titles and role names used in selected frameworks.

 Scaling RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 82 / 101

Figure 35: Role names for requirements responsibility

Some frameworks (Scrum@Scale, Nexus, SAFe) reserve the role name “Product Owner” for
the individual team and propose new role names for the higher-level coordination roles.
Scrum@Scale uses the term Chief Product Owner, for example.

In SAFe the Product Manager is responsible for the output of multiple teams, who together
form an Agile Release Train. Where multiple Agile Release Trains work together to fulfil the
requirements of an even larger solution, they are managed by a Solution Manager. At the
largest level of granularity, corporate-wide agility, Epic Owners have overall requirements’
responsibility and together represent the Portfolio Management.

LeSS goes the opposite way and states that even for large teams the responsibility is with the
Product Owner. Individual teams can then assign Area Product Owners to manage
requirements for the part of the product assigned to smaller teams.

You should remember: Job titles do not matter as long as there is someone (or a small group)
that is responsible for managing requirements. All frameworks suggest working with a single
product backlog, independent of the size of the team (see more details about logical backlogs
in chapter 6.2). Parts of that single backlog can then be assigned to sub-teams.

Whatever mechanism you use, make sure that the sub-teams (or their representatives)
communicate on a regular basis about overlaps, dependencies and priorities in order to achieve
the best outcome for the overall developers.

6.1.3 Organizing Lifecycles/Iterations

In our definition in chapter 1.3 we stated that RE@Agile is an iterative process. For large
projects, most of the scaling frameworks suggest two different kinds of iterations:

 Short iterations (often called sprints): where individual developers try to implement the

backlog items allocated in the sprint planning meeting. These short iterations typically last

between two and four weeks.

 Scaling RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 83 / 101

 Longer iterations (often called releases): mainly intended to ensure integration of the results of

multiple teams. Releases can contain a number of short iterations. Different frameworks

establish different rules for how frequently to integrate, ranging from integrate in every

iteration to integrate at least in every release. Release iterations should not last longer than

two to three months.

For more about release planning and roadmapping see chapter 6.3.

6.2 Criteria for structuring Requirements and Teams in the Large

In large-scale product development multiple teams have to work together on the same product. In
practice, each team develops a specific product slice that must be integrated with other slices to build a
working solution. Only the integrated product has value for the stakeholders.

When scaling product development to multiple teams, it is not sufficient for all Product Owners to
simply meet and somehow discuss which teams should develop which part of the product, and then to
hope for the best! Sophisticated structures and practices are needed to support team collaboration,
manage requirements changes and enable rapid product delivery. Otherwise, developers may waste
effort coordinating with teams that are not relevant for their work.

From a requirements perspective we have to close the loop: from the initial (business-) requirement
demanded by stakeholders, through the splitting of complex requirements into smaller pieces
manageable by developers, and then onto ensuring that the assembled results combine to form a
solution that can be released to the business.

6.2.1 Product-focused backlog

Product Owners need a shared understanding of the product and its business context. This is important
as they need to work collaboratively on requirements at different abstraction levels and to agree on
individual teams' priorities, which should also reflect overall business priorities. Furthermore, agile
teams must identify requirement overlaps and dependencies in order to minimize interruptions during
development.

To support this kind of product focus, requirements must be managed using one logical backlog. The
key idea is that each requirement is held in one place only, avoiding redundancies and contradictions.
This can still be achieved even when further sub-dividing the backlog into team backlogs, as illustrated
in Figure 36. While refining coarse-grained requirements, Product Owners may work on backlog items
not yet associated to any team (see (a) in Figure 36) or they may split complex requirements and hand
the resulting backlog items to the teams for further refinement (see (b) and (c) in Figure 36). To ensure
traceability among requirements on different abstraction levels, Product Owners should link the
backlog items.

For example, considering a complex requirement that describes the connection of a specialized
hardware device with a computer app using a proprietary protocol. This requirement is initially stored
in the product backlog (see (a) in Figure 36). Assuming, that Team A and B develop the sytem, whereas
Team A has experience with the hardware device. Thus, the complex requirement can be split into a
smaller requirement focusing on the interface of the hardware device, which is managed in the backlog
of Team A, and another requirement describing the handling of the connection within the app (see (c)
in Figure 36), which is managed in the backlog of Team B.

Depending on the tool that is used for backlog management, you can either define team filters on the
common product backlog, or you can create (virtual) backlogs for each team. Regardless of the choosen
tooling, all backlog items together form one logical backlog.

 Scaling RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 84 / 101

Figure 36: Key idea of the logical backlog approach.

In scaling frameworks such as Nexus, SAFe and Less, one logical product backlog is recommended as

well. In SAFe, the logical backlog is split into different backlogs which are linked according to their

scaling level (e.g Portfolio Backlog, Solution Backlog, Program Backlog, several Team Backlogs). Each

backlog contains requirements of appropriate granularity according to the scaling level. For example,

backlog items from the Program Backlog are refined in Team Backlogs, while additional items arising

from the team’s local context may also be added directly to the Team Backlogs.

6.2.2 Self-organizing teams and collaborative decision-making

Product development will find it hard to react to changes in a timely fashion if each team depends on a
complicated web of interactions with other teams to approve any decision. A team structure is required
that allows teams to self-organize around value creation: to better respond to stakeholder feedback, to
make reasonable decisions independently and to deliver end-to-end features [Anderson2020].

The benefits of self-organizing teams are one of the Agile principles [AgileManifestoPrinciples].
Localized, direct communication within teams (intra-team) allows for optimizations and effective
decision making, while communication between different teams (inter-team) is slower and should, in
general, be kept to a minimum [Reinertsen2008].

Nevertheless, there will always be a need for collaboration within a network of teams working towards
a shared goal. A level of communication and coordination is required that will, inevitably, constrain the
level of freedom enjoyed by individual teams.

In order to both work on requirements collaboratively, and to take reasonable decisions autonomously,
teams need a general understanding of the requirements of the other teams with whom they have to
collaborate, without, though, becoming overwhelmed with all the details. Product Owners should
therefore find an appropriate level of detail, sufficient for teams to understand the impact of their
decisions on other teams.

 Scaling RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 85 / 101

6.2.3 Understanding feature-based requirements splitting

Splitting requirements is necessary in agile development to break down larger requirements into more
fine-grained ones, which can be implementd in one iteration. As discussed in chapter 3.4, different
splitting techniques exsist that should be applied in agile development regardless of how many teams
are involved. But requirements splitting is much more fundamental in large-scale product development
as it enables self-organizing teams which must be able to implement requirements independently from
each other.

To deliver shippable product increments with minimal dependencies on other teams, agile teams should
work on loosely-coupled, end-to-end features. In our context, the term ‘end-to-end feature’ refers to a
set of coherent functions performing a specific task that provides business value to stakeholders.
Depending on the abstraction level at which the splitting is taking place, however, the definition of tasks
may range from specific user functions to entire business processes.

To identify end-to-end features, Product Owners must decompose the product scope into units of
loosely-coupled and internally consistent functionality (i.e. functional boundaries), as represented in
Figure 37. If the scope is split according to these functional boundaries, Product Owners assigned to a
particular unit can work on associatd requirements with a greater degree of independence.
Corresponding teams are often referred to as feature teams [Larman2016].

Figure 37: The scope is partitioned to smaller units of end-to-end functionality and shared among Product

Owners.

A Product Owner and usually one agile team are assigned to a unit of end-to-end functionality.
Boundaries between units help to establish the communication pathways. The boundaries should be
clear in order to enable effective collaboration; Product Owners can focus on the detailed requirements
assigned to their unit rather than spending a lot of time trying to understand the entire scope and
business context. They only have to collaborate with other Product Owners on requirements affecting
adjacent units. Requirements can be organized hierarchically based on independent units, as discussed
in chapter 6.2.1.

Partitioning the scope of a product can be achieved along business process lines, as discussed in
chapter 3.2. If a business process consists of multiple process lines, each line can be supported by end-
to-end business-level product features. Ideally, different process lines should be loosely coupled within
a business process, which usually allows product owners to work independently on the requirements
of their features. In this case, they only have to agree on features that affect the interaction of the process
lines.

Use Cases are an approach to structuring requirements, not always typically associated with Agile, but
nevertheless recommended by a number of authors (for example Jacobsen, Cockburn, Leffingwell). Use
cases view the system as a black box and consider the actions that take place between an actor (human
or another system) and the solution.

 Scaling RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 86 / 101

Use cases may be used as part of the upfront activities to scope and structure a project, as discussed in
chapter 2.1.5.3, or elaborated as part of ongoing product development. In contrast to process lines, a use
case can be seen at a user-level as an end-to-end functionality of the product. Product Owners must only
agree on requirements that relate to several use cases (for example interfaces or common business
entities).

6.2.4 Considerations when feature-based requirements splitting is not possible

Unfortunately, in many cases it is not that easy to decompose requirements based around loosely-
coupled units of end-to-end functionality. Due to architectural design (for example technology,
infrastructure, system components, common platform, architectural layers such as front- and backend)
as well as organizational considerations (specialist skills, team location, sub-contractors), units of
functionality may overlap as illustrated in Figure 38. This means that different agile teams must work
together to implement specific features and their respective Product Owners need to collaborate more
closely on requirements [Figure 38]. Alternatively, a dedicated team can be established to specifically
work on the overlap, and to collaborate with each of the original teams focused on a unit of functionality.

Figure 38: Intersecting units indicate close collaboration of Product Owners with respect to requirements.

To implement features collaboratively, agile teams require a shared understanding of requirements and
their business context. They must also agree on overlapping (cross-cutting) requirements, constraints
and common technical interfaces so that deliverables from different teams can be integrated to working
increments. Integration and testing of features become more complex and synchronizing teams using
backlogs and roadmaps is even more critical (see chapter 6.3).

Distributed team locations across different time zones present particular communication challenges
and require greater effort to coordinate. If developers from several distributed teams need to implement
certain features together, for example, Product Owners must spend more time in decomposing
requirements of those features in order to minimize expensive communication. Meetings (virtual or
physical!) must be organized explicitly with additional planning effort and at potentially inconvenient
times. Different spoken languages or cultures may present further problems.

Teams distributed in different locations but in the same or adjacent time zones do not have all these
difficulties, but nevertheless require some effort to organize effective communication, whether through
virtual or physical meetings or using other collaboration tools. Video conferencing and collaborative
tools can be of much use here.

A special form of distributed teams are sub-contracted teams. Such teams are not necessarily
geographically distributed, but rather organizationally distributed i.e., team members are employees of
another organization that is in some contractual relationship with other teams.

Ideally Product Owners should not be sub-contracted, as conflicts of interest may prevent them from
taking full product responsibility. Sub-contractors often have their own goals, which may at times not
fully correlate with the overall product vision or goals.

 Scaling RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 87 / 101

Each team must deliver value for the product increments. Some teams do not implement features but
instead focus on managing infrastructure or helping other teams to integrate deliverables into product
increments. For example, SAFe proposes having a dedicated system team which will do the integration
of all team artifacts towards one releasable product increment. The Nexus Framework proposes having
a "Nexus Integration Team", which is not performing the work but rather providing consultation to the
developers on how to do this themselves. Hence, they add value implicitly to the product increment.

Further details on agile organizational design and practices can be found in [Anderson2020].

Finally, we should be aware of the observation of Conway who described a very common pattern known
as “Conway’s Law”. It points out that organizational structure exerts an influence on system design and
product structure. In his article [Conway1968], Conway states that organizations that build new
systems or products tend to structure their products in the same way that they themselves are currently
organized and communicate. The resulting team structure is often sub-optimal with respect to efficient
development and delivery in a large-scale agile context.

6.2.5 Telecoms company example

In this example, we illustrate the aforementioned approach for feature-based requirements splitting
and discuss the influence of organizational context on the structure of agile teams and their ability to
deliver working product features to customers.

Consider the example of a telecoms company looking to develop and launch two new broadband
products to their customers:

1. A new high speed VDSL (internet over the telephone line) product “VDSL100”

2. A fibre-to-the-home (internet over optical fibre) product “FTTH1000”. In a first phase, Product
Owners analysed the two new products and together they established the requirements
hierarchy according to the key business processes as shown in Figure 39:

Figure 39: Broadband product requirements structure

Even if the details for each requirement might vary across the two products, the organization of the
coarse-grained requirements is the same.

To provide the two products to their customers, the telecoms company must extend its existing IT
system. For reasons relating to the organization’s history, the key IT systems, as well as the resources
and skills within the IT team, are organized as follows (1) Online Shop and Customer Service Portal, (2)
Customer Account and Billing System and (3) Network Provisioning and Installation Systems.

 Scaling RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 88 / 101

That is to say, the online shop and customer services portal is considered a single IT product, with a full
technology stack of front-end, business logic and persistence layer. This is also the case for the customer
accounts and billing system. Developers typically specialize in one or other of these systems, but not
both. The network and provisioning systems are more diverse but are similarly handled by specialist
technical roles.

As the organization looks to transition to a scaled agile approach, leaders of the telecoms company meet
with Product Owners to discuss the best structure for agile teams. The first proposed team structure
and the assigned product requirements are shown in Figure 40:

Figure 40: Team structure matching the organizational structure

The composition of the agile teams closely matches the existing organizational structure. The team
members are specialists in the corresponding system and work on requirements that address that
system. Communication among the teams is primarily required to ensure that the systems work
together to sucessfully launch the two services. No team is able to independently deliver working
features fully supporting a customer interested in either product. In addition to each team’s Product
Owner, who specializes in the requirements of that system, further Product Owners might be required
to coordinate the delivery of the coarse-grained, end-to-end process requirements.

 Scaling RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 89 / 101

To reduce communication effort among teams, a second composition of the agile teams, shown in Figure
41 is then proposed:

Figure 41: Team structure according to connect and terminate services

Each team is responsible for one key business process and experts from each of the respective systems
are mixed in each agile team. Thus, a team is capable of delivering an end-to-end process feature (for
example, ordering a broadband product) and providing value to customers (as per the feature teams
discussed in chapter 6.2.3). From the requirements point of view, coordination effort is reduced as each
Product Owner can design their product with greater autonomy. Coordination is principally required
on the product-level (VDSL 100, FTTH 1000), for example to ensure a consistent product model across
the different processes. As the integrated solution includes three single IT systems, communication
between the teams will be required to coordinate changes and releases within a particular system.

 Scaling RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 90 / 101

Another composition of agile teams is discussed, shown in Figure 42, also emphasising the concept of
teams with full end-to-end capabilities:

Figure 42: Team structure with full end-to-end capabilities

Here each agile product team is capable of fully delivering a marketable product with all its features
(VDSL 100, FTTH 1000). With expertise across all systems and all business processes each team is able
to deliver business value independently. From an agile perspective, this team structure should be
preferred. In practice, however, these teams run a high risk of duplicating functionality as they work on
the overlapping requirements. To address this issue a shared functions team, specializing on just these
overlaps, is suggested, and is tasked with finding generic solutions across the two products: leveraging
existing systems and services where possible, or developing enabler features where appropriate to
support these and other products (see the distinction between business features and enabler features
in 6.1.1).

So which approach should we choose? Unfortunately, there is no simple answer. As discussed above, the
preferred approach will depend on many factors: the existing organizational structure, its willingness
to change, technical and architectural constraints as well as the degree of shared functionality across
the different products and processes. Ideally, we would first structure the requirements and then aim
to build feature teams as far as possible, but in truth a balance must be sought after careful consideration
of all these factors.

6.3 Roadmaps and Large Scale Planning

In large-scale product development, Product Owners manage requirements in the product-focused
backlog as discussed in chapter 6.2.1. In contrast to the backlog, a roadmap is used for planning product
development incrementally. A roadmap is a prediction of how the product will grow [Pichler2016].
Roadmaps do not change the content of backlog items but arrange them onto a timeline. It answers the
question when we can roughly expect which features.

A roadmap is a useful means to communicate (strategic) goals and decisions to the developers and other
stakeholders. It breaks down a long-term goal into manageable iterations, represents dependencies
among the teams and provides direction and transparency to the stakeholders.

A roadmap is the result of a planning exercise, as shown in Figure 43. The basis for planning is on the
one hand the ordered and estimated product backlog and on the other hand the available developers
and their capacity.

 Scaling RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 91 / 101

Figure 43: Planning exercise

With this input a Product Owner then faces the typical project management triangle in having to balance
scope (features or functionality of the product), costs (available resources) and schedule (delivery
dates). We have deliberately drawn the triangle standing on its head to indicate that in agile projects
very often costs and schedule are fixed and therefore the planned features are the only variable.

At the beginning of the agile product development, little is known about the product or the work done
by the teams. Thus, the scope of the product, as well as the cost estimates, are subject to a high level of
uncertainty. As more iterations are completed and as more feedback is gathered from the stakeholders,
the uncertainty gradually decreases leading to more reliable planning and a stable roadmap. This
principle is known as the cone of uncertainty [Boehm 1981]. However, the cone of uncertainty also
shows that releases to be published soon, offer greater certainty as to what functionalities will be
included, while releases further in the future can only be vaguely defined (see Figure 43). Although this
principle is generally true for all agile development projects, it becomes even more important in large-
scale product development, as the risks due to product complexity and the potential for misalignment
across multiple teams – and consequently the need for more planning - are even greater.

6.3.1 Representing roadmaps

A roadmap shows strategic goals, milestones and coarse-grained requirements (for example feature
sets). Important milestones may be either internal or determined by external events such as a trade
show or the introduction of new regulation to the market.

The representation of a roadmap depends on its purpose, target group and planning horizon. For
customers, management sponsors and the business, a long-term product roadmap containing strategic
goals and coarse-grained product requirements is often sufficient, with features usually described in
business language [Pichler2016].

In SAFe, the product roadmap is called the ‘Solution Roadmap’ and represents long-term milestones,
strategic themes and releases. A ‘Solution Roadmap’ typically provides a one- to three-year view, with
the level of granularity greater in the near term and then reducing into the long term.

SAFe divides a ‘Solution‘ into smaller ‘Program Increments‘ which deliver value to the customers in the
form of working features. To represent the shorter planning horizon, SAFe introduces the ‘Program
Increment Roadmap’, comprising up to four iterations. This offers a more detailed view of the work to
be done over coming months.

Another type of roadmap, known in SAFe as a ‘Program Board‘ [Leffingwell2017], focuses on delivery.
This provides developers and their Product Owners with a view of fine-grained backlog times (for
example stories or tasks) and the dependencies among them.

 Scaling RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 92 / 101

A product roadmap of our case study iLearnRE containing strategic goals and coarse-grained features
is shown in Figure 44.

You can see here the three next releases: the first one is already committed; the other two are forecasts.
Each release is assigned to a pre-defined planning horizon. The features are described in business terms
rather than as epics and stories.

Figure 44: A roadmap for the case study iLearnRE

In chapter 3 we introduced story maps as a way to structure your product backlog. These maps can be
extended to display the roadmap for the next releases simply by using the vertical axis to align epics,
features and stories to certain releases, thus creating individual release backlogs. This is shown in Figure
45. The items on the story map can be coarser if the release is still some time ahead.

Figure 45: Story maps with release overlay

 Scaling RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 93 / 101

Using stories and epics to represent the product roadmap has several drawbacks. For most business
stakeholders it might be hard to understand how the product as a whole is evolving as too many details
are included. Moreover, those roadmaps are prone to changes and must be updated regularly, which is
time-consuming.

Figure 46 shows a roadmap which not only includes the planned iterations, but also on the vertical axis
an alignment of backlog items to multiple teams, as discussed in chapter 6.2. Program boards are fine-
grained delivery roadmaps that are used in SAFe during ‘Program Increment Planning’. They contain
the language of the developers expressed by backlog items.

The board represents the features to be implemented (F1...F4). The features are broken down into
backlog items, here colour-coded. Their order is indicated by the number. The board is used to identify
critical cross-team dependencies among work items, as indicated by the arrows.

Figure 46: A roadmap with explicit dependencies

If your teams are at the same location, you may be able to maintain your roadmap physically on the wall.
If you have to work with distributed teams, you will find dozens of roadmapping tools to support visual
planning of multiple releases, many of which are capable to a greater or lesser extent of integrating with
the tools used to manage the backlog itself.

In contrast to SAFe, other frameworks such as Less and Nexus do not suggest any specific usage of
roadmaps. That does not mean that roadmaps cannot be used within those frameworks, but rather it is
up to the developers to decide whether a roadmap is required and which type of roadmap will best
support planning and integration work.

 Scaling RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 94 / 101

6.3.2 Synchronizing teams with roadmaps

Agile development is focused on short iterations with fast feedback cycles, so the ideal situation is one
in which the product can be developed with the close collaboration of small groups on a short rhythm.

It is also key that a regular rhythm is established for development iterations and releases [DeMarco et
al.2008]. Irregular cycles irritate the team, make planning harder and make it harder to track the
velocity of the developers.

This rhythm is also called cadence. In music a cadence is a melodic configuration that creates a sense of
resolution or finality. For software development this sense of resolution is created on multiple levels of
abstraction: within the developers through daily standup meetings, for the developers as a whole in
delivering to the Product Owner at the end of a sprint iteration, and potentially for the scaled
development organization in creating a shippable product increment for each release cycle.

If you have only one team, delivering a new product increment after every iteration can be done without
aligning with other teams. Thus, no other cadence than the iteration cadence (in Scrum the length of the
sprint) is needed. If you have multiple teams working on the same product, you need to integrate all
team deliverables to a new product increment. As end-to-end testing and the work required to package
all deliverables into a release may involve some additional effort, an additional cadence for customer
releases may be introduced.

In this sense, a large-scale agile organization can be compared with a large orchestra performing
complex music. A well-working, large-scale agile organization shows a kind of harmony. If the
organization is not working well, then the harmony is not visible, just like an orchestra that is not playing
in time. If you have to work with multiple teams, then the iteration lengths for each team do not have to
be identical, but the cycles should be compatible in the sense that they can be synchronized at the level
of the larger cadence. Thus, for example, individual teams may choose a sprint length of two or four
weeks within a four- (or eight-) week release cycle (see Figure 47).

Figure 47: Different but compatible iteration lengths

Manual integration and testing are likely to lead to longer release cycles. Automation can help to shorten
release cycles: continuous integration approaches and continuous deployment capabilities may allow
teams to deploy features on shorter cycles.

 Scaling RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 95 / 101

6.3.3 Developing roadmaps

In large-scale product development, requirements work is carried out by different Product Owner roles
based around a hierarchy of requirements, as discussed in chapter 6.2.1. Responsibilities with respect
to roadmaps will also be different at each level of the hierarchy. On a higher level, for example, Product
Owners may be responsible for the product roadmap and, on a lower level, they may be more focused
on the delivery roadmap.

To develop a long-term product roadmap, a Product Owner must first define a product vision and
strategy (see chapter 2). This is necessary so that the right stakeholders are engaged to work on the
product roadmap (stakeholder management).

After establishing a product vision and strategy, Product Owners must then elicit coarse-grained
requirements (see chapter 3) by engaging with the necessary stakeholders. There is no need to invest
time on detailed requirements at this point. Later, during backlog refinement, more details will be
discovered.

To gain full support for product development, various stakeholders must be involved early and should
understand the business goals of the product. The product roadmap should therefore be tailored to their
particular interests and information needs and should be shared and validated with them regularly.
Common stakeholders are, for example, executives and senior management, sales and marketing, as well
as developers.

Product Owners assign coarse-grained requirements over a broad planning horizon, while also showing
strategic goals on the timeline. In an initial product roadmap, Product Owners should avoid hard
deadlines. Instead, the features should be planned at the monthly or quarterly level. As product
development matures, concrete dates and deadlines can be added.

To create a mid-term delivery roadmap, Product Owners must refine the backlog items from the existing
product roadmap. These items need to be roughly estimated by the developers, even if the estimates are
still imprecise (for example T-shirt sizes) at this stage. The estimate must only be good enough to
provide an overview of upcoming iterations.

Experience from practice shows that in most large-scale estimates, the errors for each individual
estimate cancel each other out, meaning that the overall estimate is reasonably accurate, despite
individual errors.

In chapter 3 we discussed estimation techniques for backlog items. You can also apply the same
techniques for longer term estimation and planning. This estimation work is beyond the scope of
traditional Requirements Engineering but becomes important in RE@Agile contexts because
requirements work goes hand-in-hand with planning. Much more on that topic can be found in
[Cohn2006].

Creating and updating delivery roadmaps typically happens at face-to-face planning events known as big
room plannings (or PI Planning in SAFe), held at regular intervals. In such events, developers
collaboratively plan, estimate and prioritize features. Products owners prepare the backlog items
upfront and align them to the vision as well as to the existing product roadmap. Teams work with each
other to identify the important risks and dependencies. The delivery roadmap is updated to show the
refined backlog items, the dependencies among them and how they align with the product vision.

 Scaling RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 96 / 101

6.3.4 Validating roadmaps

The product roadmap should also be reviewed from the perspective of the business: customer feedback,
market changes, upcoming ideas and markets trends, as well as similar products entering the market,
should all be considered. For this purpose, the MMP (as introduced in chapter 5.5) is a good starting
point. The validation intervals depend on the stability of the market: in a highly dynamic market, for
example, the product roadmap should be reviewed at least monthly, otherwise, quarterly intervals may
be sufficient. The key stakeholders should be kept involved with the developing roadmap to increase
acceptance and to communicate changes.

In order to narrow the cone of uncertainty, delivery roadmaps should also be updated regularly, based
either on stakeholder feedback on integrated product increments (see MVP in chapter 5.5), or on the
results of prototypes. The validation intervals depend on the maturity of the product development and
on changes to the product roadmap. In a mature development process, for example, where senior
developers have been working together for some time on the same product, the delivery roadmap may
only need to be reviewed after a release. At the beginning of the product development, the delivery
roadmap should be validated after integrating the first product increment. Validation of delivery
roadmaps can be included within the regular planning events described above.

6.4 Product Validation

A key idea of agile development is to develop a small slice of the product, generate feedback by involving
stakeholders and adapt the product development according to the findings and insights gained. Thus,
following the principle of the Build-Measure-Learn cycle [Ries2011], product validation becomes an
important step to gain rapid feedback. Each time a new product version is released, Product Owners use
that product increment to verify its business value and to examine whether the product requirements
had been correctly understood.

Product-level validation is an important method in large-scale product development as it ensures that
Product Owners together share full accountability from business requirements to product integration.
It is the whole product that has value for the stakeholders, not only small product slices.

In Scrum, a sprint review is a suitable measure to present a product increment to the relevant
stakeholders. In large-scale product development, a similar idea can be used: but instead of reviewing a
single product slice developed by one team, all team deliverables are integrated to a working product
increment worth validating. The product increment is demonstrated in a product review
(demonstration), showcasing end-to-end features. Thus, stakeholders get a better impression of the
entire product [SAFe1], [Larman2016], [LeSS].

To coordinate the integration work that is the basis for product-level validation, a delivery roadmap
showing release milestones can be used to synchronize the teams (see chapter 6.2.3).

The challenges of large-scale product development (as mentioned in chapter 6.1) must be considered in
product-level validation as well. This means that you must involve a high number of stakeholders and
users effectively and communicate their feedback back to the developers. Moreover, you must reach an
overall understanding of the integrated product by considering different stakeholder perspectives and
knowledge.

When involving many people in a large product review, it is very important to find the right level of
detail in discussions to keep all participants interested. One approach is to use a diverge-and-converge
collaboration pattern [Design Council]. In the diverge part of the review, the room is divided in multiple
areas where teams demonstrate different features of the product increment. As on a bazaar, people walk
around, attend demonstrations of interest and give feedback to the corresponding team. Afterwards, in
the converge part of the review, people get together to summarize their findings and discuss important
aspects and share new ideas.

 Scaling RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 97 / 101

Product reviews feature in several scaling frameworks. In Nexus and Less the review meeting is called
a Sprint Review. In SAFe it is known as System Demo. According to the Nexus guide, the review should be
time-boxed using, as a rule of thumb, roughly four hours for a one-month sprint.

Another approach for product validation in large-scale product development is one that is based on data
analysis [Maalej et al.2016]. The integrated product increment is delivered to users and, based on their
behavior, measurements are made as to whether the product features have a positive, neutral or
negative impact. Data analysis frameworks are typically used to analyze feedback data systematically.
For example, Product Owners can use the results to identify potentially poorly-designed features. To
better understand the identified problems, they may need to again apply regular requirements
elicitation and analysis techniques.

However stakeholder feedback has been gathered, Product Owners adapt and re-prioritize existing
backlog items and add new items whereever necessary. Some items may be removed from the backlog
if it has been shown in product validation that the corresponding features do not generate the intended
value. Changes to the product backlog may, in turn, trigger changes to the product and delivery roadmap,
as discussed in chapter 6.3.4.

 Scaling RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 98 / 101

List of Abbreviations

DSDM Dynamic Systems Development Method

DoD Definition of Done

DoR Definition of Ready

LeSS Large Scale Scrum (https://less.works)

MMP Minimum Marketable Product

MVP Minimum Viable Product

PO Product Owner

RE Requirements Engineering

ROI Return on Investment

SAFe Scaled Agile Framework (www.scaledagileframework.com)

WSJF Weighted Shortest Job First

https://less.works/
http://www.scaledagileframework.com/

 Scaling RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 99 / 101

References

[AgileAlliance] Glossary of the Agile Alliance: Definition of term “Definition of Ready”:
https://www.agilealliance.org/glossary/definition-of-ready, Last visited May 2021.

[AgileManifestoPrinciples] https://agilemanifesto.org/principles.html, Last visited May 2021

[Alexander2005] Alexander, I. F.: A Taxonomy of Stakeholders – Human Roles in System Development.
International Journal of Technology and Human Interaction, Vol 1, 1, 2005, pages 23-59.

[AmLi2012] Ambler, S., Lines, M.: Disciplined Agile Delivery: A Practitioner's Guide to Agile Software
Delivery in the Enterprise, IBM Press, 2012

[Anderson2020] Anderson, J.: Agile Organizational Design – Growing Self-Organizing Structure at Scale.
Leanpub, 2020.

[Beck2002] Beck, K.: Test Driven Development: By Example. Addison-Wesley 2002.

[BiKo2018] Bittner, K.; Kong, P.; West, D.: The Nexus Framework for Scaling Scrum, Addision Wesley,
2018

[Boehm 1981] Boehm Barry W.: Software Engineering Economics Published 1981 by Prentice Hall

[BOSSANOVA] https://www.agilebossanova.com/#bossanova, last visited May 2021

[ClBa1994] Clegg, D.; Barker, R. (2004-11-09). Case Method Fast-Track: A RAD Approach. Addison-
Wesley.

[Clements et al.2001] P. Clements et al.: Evaluating Software Architectures, SEI Series in Software
Engineering, 2001

[Cohn2004] Cohn, M.: User Stories Applied For Agile Software Development, Addison-Wesley, 2004

[Cohn2006] Cohn, M.: Agile Estimation and Planning, Addison Wesley, 2006

[Conway1968] Conway, Melvin E.: How Do Committees Invent? Datamation Magazine, 1968.
http://www.melconway.com/Home/Committees_Paper.html. Last visited May 2021.

[Cooper2004] Cooper, A.: The Inmates are Running the Asylum: Why High Tech Products Drive Us Crazy
and How to Restore the Sanity

[DeMaLi2003] DeMarco, T.; Lister, T.: Waltzing with Bears – Managing Risks on Software Projects,
Dorset House, 2003

[DeMarco et al.2008]: DeMarco, T.; Hruschka, P. Lister, T.; McMenamin, S.; Robertson, J+S.: Adrenaline
Junkies and Template Zombies – Understanding Patterns of Project Behavior, Chapter 31: Rhythm,
Dorset House, 2008

[Design Council] A study of the design process;
https://www.designcouncil.org.uk/sites/default/files/asset/document/ElevenLessons_Design_Counc
il%20(2).pdf. Last visited May 2021

[Doran1981] Doran, G. T: There’s a S.M.A.R.T. way to write management’s goals and objectives,
Management Review. AMA FORUM. 70 (11): 35–36 1981.

[Glinz2014] Glinz, M.: A Glossary of Requirements Engineering Terminology. Standard Glossary for the
Certified Professional for Requirements Engineering (CPRE) Studies and Exam, Version 2.0, 2020.
https://www.ireb.org/en/downloads/#cpre-glossary. Last visited May 2021.

[HaHP 2000] Hatley, D., Hruschka, P., Pirbhai, I.: Process for System Architecture and Requirements
Engineering, Dorset House, N.Y. 2000

[HeHe2010] Heath, C., Heath, D.: Switch: How to Change Things When Change Is Hard. Crown Business,
2010

https://www.agilealliance.org/glossary/definition-of-ready
https://agilemanifesto.org/principles.html
https://www.agilebossanova.com/#bossanova
https://www.amazon.de/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Paul+Clements&search-alias=books-de-intl-us&field-author=Paul+Clements&sort=relevancerank
http://www.melconway.com/Home/Committees_Paper.html
https://www.designcouncil.org.uk/sites/default/files/asset/document/ElevenLessons_Design_Council%20(2).pdf
https://www.designcouncil.org.uk/sites/default/files/asset/document/ElevenLessons_Design_Council%20(2).pdf
https://www.ireb.org/en/downloads/#cpre-glossary

 Scaling RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 100 / 101

[Highsmith2001] Highsmith, J.: Design the Box. Agile Project Management E-Mail Advisor 2001,
http://www.joelonsoftware.com/articles/JimHighsmithonProductVisi.html. Last visited May 2021.

[Hruschka2017] http://www.b-agile.de/Resources/Story-Splitting. Last visited May 2021.

[ISO25000] ISO/IEC 25000:2014: Systems and software engineering: System and Software Quality
Requirements and Evaluation (SQuaRE) - Guide to SQuaRE:
https://www.iso.org/standard/64764.html. Last visited October 2018.

[ISO25010] ISO/IEC 25010:2011: Systems and software engineering - Systems and Software Quality
Requirements and Evaluation (SQuaRE) - System and software quality models:
https://www.iso.org/standard/35733.html. Last visited May 2021.

[ISO25012] ISO/IEC 25012:2008: Software engineering - Software product Quality Requirements and
Evaluation (SQuaRE) - Data quality model: https://www.iso.org/standard/35736.html. Last visited May
2021.

[Jacobson1992] Jacobson, I. Object-oriented Software Engineering - A Use-Case Driven Approach, ACM
Press, 1992

[Jacobson2011] https://www.ivarjacobson.com/publications/white-papers/use-case-ebook. Last
visited May 2021

[HaCh1993] Hammer, M., Champy, J.: Re‐Engineering the corporation. Harper, 1993

[Jeffries2001] Jeffries, R.: Essential XP: Card, Conversation, Confirmation, 2001,
https://ronjeffries.com/xprog/articles/expcardconversationconfirmation/ Last visited May 2021.

[Kahneman2013] Kahneman D.: Thinking, Fast and Slow. Farrar, Straus and Giroux, 2013.

[KnLe2017] Knaster, R.; Leffingwell, D.: SAFe 4.0 Distilled, Addison Wesley, 2017

[Kniberg] Kniberg, H.: Scaling Agile @ Spotify with Henrik Kniberg
https://www.youtube.com/watch?reload=9&v=jyZEikKWhAU&feature=youtu.be ,and
https://www.youtube.com/watch?v=4GK1NDTWbkY&t=156s. Last visited May 2021

[Larman2016] Larman, C: Large-Scale Scrum: More with LeSS, Addison Wesley, 2016

[Lawrence1] Lawrence, R: How to Split a User Story http://agileforall.com/resources/how-to-split-a-
user-story. Last visited May 2021

[Lawrence2] Lawrence, R: Why Most People Split Workflows Wronghttp://agileforall.com/why-most-
people-split-workflows-wrong/. Last visited May 2021

[Leffingwell2007] Leffingwell, D.: Scaling Software Agility – Best Practices for Large Enterprises,
Addison Wesley, 2007

[Leffingwell2010] Leffingwell, D.: Agile Software Requirements – Lean Requirements Practices for
Teams, Programs, and the Enterprise, Addison Wesley, 2010

[Leffingwell2017] Leffingwell, D. et al.: SAFe Reference Guide, Scaled Agile, Inc. 2017

[LeSS] Large-Scale Scrum: https://less.works Last visited May 2021

[Maalej et al.2016] Maalej, W., Nayebi, M., Johann T., Ruhe, G.: Toward Data-Driven Requirements

Engineering. IEEE Software (Volume 33, Issue 1), 2016

[MaKo2016] Maher, R., Kong, P.: Cross-Team Refinement in Nexus,
https://www.scrum.org/resources/cross-team-refinement-nexus. Last visited in May 2021

[McPa1984] McMenamin, S., Palmer, J: Essential Systems Analysis, Yourdon Press, 1984

[Meyer2014] Meyer, B.: Agile! The Good, the Hype and the Ugly, Springer, 2014.

[Nexus Guide] https://www.scrum.org/resources/nexus-guide. Last visited May 2021

http://www.joelonsoftware.com/articles/JimHighsmithonProductVisi.html
http://www.b-agile.de/Resources/Story-Splitting
https://www.iso.org/standard/64764.html
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35736.html
https://www.ivarjacobson.com/publications/white-papers/use-case-ebook
https://ronjeffries.com/xprog/articles/expcardconversationconfirmation/
https://www.youtube.com/watch?reload=9&v=jyZEikKWhAU&feature=youtu.be
https://www.youtube.com/watch?v=4GK1NDTWbkY&t=156s
http://agileforall.com/resources/how-to-split-a-user-story
http://agileforall.com/resources/how-to-split-a-user-story
http://agileforall.com/why-most-people-split-workflows-wrong/
http://agileforall.com/why-most-people-split-workflows-wrong/
https://less.works/
https://www.scrum.org/resources/cross-team-refinement-nexus
https://www.scrum.org/resources/nexus-guide

 Scaling RE@Agile

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level RE@Agile – Version 2.0.0 Page 101 / 101

[OsPi2010] Osterwald, A., Pigneur, Y.: Business Model Generation: A Handbook for Visionaries, Game
Changers, and Challengers. John Wiley and Sons, 2010

[Patton2014] Patton, J.: User Story Mapping –Discover the Whole Story, Build the Right Product, O’Reilly,
2014

[Pichler2016]: Pichler, R.: Strategize – Product Strategy and Product Roadmap Practices for the Digital
Age, Pichler Consulting 2016.

[Primer2017] CPRE RE@Agile Primer https://www.ireb.org/en/downloads/tag:re-agile-primer. Last
visited Mai 2021

[Reinertsen2008] Reinertsen, D.: Principles of Product Development Flow: Second Generation Lean
Product Development. Celeritas Publishing 2008

[Ries2011] Ries, E.: The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create
Radically Successful Businesses, Crown Business, New York, NY 2011

[RoRo2013] Robertson S. Robertson J.: Mastering the Requirements Process – Getting Requirements
Right, 3rd edition, Addison Wesley, 2013

[RoRo2017] Robertson S. Robertson J.: Volere Requirements Specification Template,
https://www.volere.org/requirements-auditing-is-the-specification-fit-for-its-purpose/ Last visited
May 2021

[Robertson2003] Robertson, S.: Stakeholders, Goals, Scope: The Foundation for Requirements and
Business Models, 2003, https://www.volere.org/wp-content/uploads/2018/12/StkGoalsScope.pdf.
Last visited June 2021

[SAFe1] https://www.scaledagileframework.com/roadmap/. Last visited May 2021

[SAFe2] https://www.scaledagileframework.com/pi-planning/. Last visited May 2021

[SAFeMDM] https://www.scaledagileframework.com/safe-requirements-model/. Last visited May
2021

[S@S Guide] Sutherland, J. and Scrum, Inc: Scrum@Scale Guide: https://www.scrumatscale.com/scrum-
at-scale-guide/, last visited May 2021

[SOCIOCRACY] https://sociocracy30.org. Last visited February 2022

[SofS] https://scrumguide.de/scrum-of-scrums/. Last visited May 2021

[Spotify2012] https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf

[Wake2003] Wake, B: INVEST in Good Stories, and SMART Tasks, 2003,
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/. Last visited May 2021

[WyHT2017] Wynne, M., Hellesøy, A., Tooke, S.: The Cucumber Book - Behaviour-Driven Development
for Testers and Developers, The Pragmatic Programmers, 2017

[Yakima 2016] Yakima, A.: The Rollout – A Novel about Leadership and Building a Lean-Agile Enterprise
with SAFe

https://www.ireb.org/en/downloads/tag:re-agile-primer
https://www.volere.org/requirements-auditing-is-the-specification-fit-for-its-purpose/
https://www.volere.org/wp-content/uploads/2018/12/StkGoalsScope.pdf
https://www.scaledagileframework.com/roadmap/
https://www.scaledagileframework.com/pi-planning/
https://www.scaledagileframework.com/safe-requirements-model/
https://www.scrumatscale.com/scrum-at-scale-guide/
https://www.scrumatscale.com/scrum-at-scale-guide/
https://sociocracy30.org/
https://scrumguide.de/scrum-of-scrums/
https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

