
Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page i/ 239

Stan Bühne
Andrea Herrmann

Handbook

Requirements Management

Education and Training

for

IREB Certified Professional for Requirements Engineering

Advanced Level Requirements Management

Practitioner | Specialist

Version 2.0.0

July 2022

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page ii/ 239

Terms of Use

1. Individuals and training providers may use this handbook as a basis for seminars, provided
that the copyright is acknowledged and included in the seminar materials. Anyone using this
handbook in advertising needs the written consent of IREB for this purpose.

2. Any individual or group of individuals may use this handbook as a basis for articles, books,
or other derived publications, provided that the authors and IREB e.V are credited as the
source and owners of the copyright.

All rights reserved. Use of the document (where this is not explicitly permitted by copyright
laws) is allowed only with the permission of the copyright owners. This applies in particular
to reproductions, processing, translations, microfilming, storage and processing in electronic
systems and public disclosure.

Acknowledgements

We would like to express our gratitude to IREB e.v. for giving us the opportunity to write this
book and for their continued organizational support throughout the process. The IREB
"Requirements Management" working group has contributed significantly to the contents of
the book, as the book is based on the syllabus created by the working group and the members
of the working group have supported us with comments, notes, and additional material. We
would therefore like to express our heartfelt thanks to the entire working group (in
alphabetical order): Frank Engel, Sven Eselgrimm, Günter Halmans, Frank Houdek, Patrick
Mäder, Alexander Rachmann, Thomas Schölzl, Amin Soesanto, Frank Stöckel, and Malik Tayeh.
Special thanks are due to Professor Dr. Martin Glinz and Dr. Thorsten Weyer who, with their
thorough appraisal and constructive comments, put the finishing touch to the book.

This handbook was produced by (in alphabetical order):

Stan Bühne, Dr. Andrea Herrmann. Translation to English by Tracey Duffy.

Copyright © 2015-2019 of the handbook "Requirements Management according to the IREB
Standard" is with the authors listed above. The rights have been transferred to the IREB
International Requirements Engineering Board e.V.

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page iii/ 239

Table of Contents
Foreword ... viii
Version History ... ix

1 What Is Requirements Management? ... 10

1.1 Definition of Requirements Management .. 10

1.2 Tasks in Requirements Management... 12

1.3 Goals and Benefits of Requirements Management ... 13

1.4 The Requirements Management Plan.. 15

1.5 Relevant Standards ... 16

1.6 Literature for Further Reading ... 18

2 Requirements Information Model .. 19

2.1 Basic Principles (Classification of Requirements) .. 20

2.2 Forms of Presentation for Documenting Requirements .. 25

2.3 Describing a Requirements Landscape with a Requirements Information Model .. 26

2.4 Content for the Requirements Management Plan ... 31

2.5 Literature for Further Reading ... 31

3 Assigning Attributes and Views for Requirements .. 32

3.1 Objectives of Assigning Attributes and Examples of the Use of Attributes in
Management Activities .. 32

3.2 What Is an Attribute Schema? .. 35

3.3 The Benefits of an Attribute Schema .. 36

3.4 Designing an Attribute Schema .. 37

3.5 Change Management for Attribute Schemas ... 47

3.6 Goals and Types of Views ... 48

3.7 Defining Views and the Risks of Views.. 50

3.8 Implementing a View ... 51

3.9 Optimizing the Assignment of Attributes and Creation of Views 52

3.10 Content for the Requirements Management Plan ... 53

3.11 Literature for Further Reading ... 53

4 Evaluating and Prioritizing Requirements ... 54

4.1 Motivation and Difficulties When Prioritizing Requirements.. 54

4.2 Principles of Evaluation .. 55

4.3 Prioritizing Requirements.. 57

4.4 Two Types of Prioritization Techniques .. 59

4.5 Ad-Hoc Prioritization Techniques ... 60

4.6 Analytical Prioritization Techniques ... 67

4.7 Combining Prioritization Techniques .. 71

4.8 Content for the Requirements Management Plan ... 72

4.9 Literature for Further Reading ... 72

5 Version and Change Management .. 73

5.1 Versioning Requirements ... 73

5.2 Change Management for Requirements ... 84

5.3 Change Management Process ... 90

5.4 Content for the Requirements Management Plan ... 94

5.5 Literature for Further Reading ... 95

6 Requirements Traceability .. 96

6.1 Reasons for Requirements Traceability ... 96

6.2 Different Traceability Views .. 98

4 Table of Contents

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page iv/ 239

6.3 Relationship Types for Traceability Relationships .. 99

6.4 Forms of Presentation for Traceability Relationships ... 104

6.5 Developing a Strategy for Project-Specific Traceability .. 112

6.6 Creating and Using Project-Specific Traceability Models ... 114

6.7 Measures for Evaluating Implemented Traceability... 120

6.8 Challenges for Traceability between Textual and Model-Based Artifacts 122

6.9 Content for the Requirements Management Plan .. 123

6.10 Literature for Further Reading .. 124

7 Variant Management for Requirements ... 125

7.1 Using Variants of Requirements ... 127

7.2 Forms of Explicit Documentation of Variants and Evaluation of These Forms 131

7.3 Feature modeling .. 136

7.4 Content for the Requirements Management Plan .. 143

7.5 Literature for Further Reading .. 143

8 Reporting in Requirements Management .. 145

8.1 The Goals and Benefits of Reporting in Requirements Management......................... 145

8.2 Establishing a Reporting System in Requirements Management 147

8.3 The Risks and Problems of Using Reporting .. 162

8.4 Content for the Requirements Management Plan .. 163

8.5 Literature for Further Reading .. 164

9 Managing Requirements Engineering Processes .. 165

9.1 Requirements Engineering as a Process.. 165

9.2 Parameters of the Requirements Engineering Process ... 168

9.3 Documenting the Requirements Engineering Process .. 172

9.4 Monitoring and Controlling the Requirements Engineering Process 175

9.5 Process Improvement for the Requirements Engineering Process 176

9.6 Content for the Requirements Management Plan .. 180

9.7 Literature for Further Reading .. 180

10 Requirements Management in Agile Projects ... 181

10.1 Background ... 181

10.2 Requirements Management as Part of Agile Product Development 186

10.3 Mapping Requirements Management Activities to Scrum Activities 189

10.4 Literature for Further Reading .. 191

11 Tool-Based Requirements Management... 192

11.1 Role of Tools in Requirements Management ... 192

11.2 Basic Procedure for Tool Selection .. 193

11.3 Data Exchange between Requirements Management Tools .. 194

11.4 Content for the Requirements Management Plan .. 196

11.5 Literature for Further Reading .. 196

List of Abbreviations ... 197

Bibliography ... 198

Index .. 205

Annex A: Template for a Requirements Management Plan ... 207

1 The Requirements Engineering and Requirements Management Process 210

2 Requirements Engineering and Requirements Management Tools 210

3 Requirements Information Model ... 210

4 Attribute Schema ... 211

5 Prioritization ... 211

6 Traceability .. 211

Table of Contents 5

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page v/ 239

7 Views and Reports ... 212

8 Versioning ... 212

9 Change Process ... 212

10 Variant Management .. 213

Annex B (Tool Selection) ... 214

1 The Challenges of Introducing and Using Tools... 215

2 Criteria for Selecting a Requirements Management Tool .. 217

3 Analyzing Selected Tools Using the Requirements Management Plan Evaluation Criteria
 222

Annex C (Earned Value Analysis) ... 235

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page vi/ 239

The IREB CPRE Advanced Level Module
"Requirements Management"

Anyone working as a requirements engineer, business analyst, consultant, demand manager,
or project manager in system and software development projects knows that for a project to
be implemented successfully, it is by no means enough to simply know the stakeholders of the
project and to document their aligned requirements at the beginning of the project!

No, even if all requirements were well structured, aligned, and accepted at the start of the
project, they will change by the end of the project or "go live"—and always at the worst times.
Requirements also change during operation of the system (or software) concerned and should
be kept up to date for documentation purposes until the system is decommissioned.

However, the fact that requirements change is due neither to the requirements engineer or
poorly selected methods, nor to the stakeholders involved; it is usually simply due to the
nature of things and constraints which change over time.

The more complex the project, the more indispensable requirements management (RM) is
to avoid uncontrolled "fire-fighting" at such times and to enable you, as the requirements
manager, to be able to provide information about the status of the requirements or about the
effects of any change requests at any given time.

On one hand, requirements management includes the conscious management of
requirements in the classic sense (e.g., by means of assignment of attributes, creation of views,
traceability, etc.) as well as the management of changes to requirements. On the other hand,
the prior planning and monitoring of the defined requirements engineering (RE) processes
are also part of requirements management, in the sense of: "How do I elicit, document, and
review my requirements to be able to continuously report on the status and to react to
planned changes?".

In this handbook for the IREB CPRE Advanced Level Requirements Management
- Practitioner - and the IREB CPRE Advanced Level Requirements Management – Specialist -,
we would therefore like to consider requirements management from both sides. To do so, we
present the essential concepts of requirements management, but always also describe the
necessary planning aspect which enables a conscious management of requirements.

To consciously manage requirements, the requirements manager must plan and define the
following at the beginning of the requirements engineering process:

▪ The requirement types to be considered, the format in which they must be presented,
and the level of detail to which they must be specified

▪ The questions the requirements manager must answer on the basis of his requirements
and the views that are necessary for the different stakeholders

▪ The criteria to be used to evaluate the requirements to support prioritization

▪ Version control for requirements and requirements documents

▪ How and when changes should be handled

▪ The requirements and other development artifacts between which traceability must be
achieved

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page vii/ 239

▪ Whether and how to document requirement variants within the requirements
specification

▪ The requirement status reports needed, the information they must contain, and the
sources (for example, attribute documentation) that can be used to determine this
information

▪ What the exact requirements engineering process (or sequence of activities) for the
project should look like, and how the process can be monitored and potentially
improved

The results of these considerations are documented in a requirements management plan
(RMP). With this document, both the requirements engineering process as a whole and the
reporting, prioritization, and changes (that are part of requirements management) can run in
a structured manner according to plan.

Requirements management is planned and executed by the requirements engineer or by
someone exercising the separate role of a requirements manager. Within the scope of
requirements management, the requirements manager plans, manages, and monitors the
requirements engineering process and its artifacts, reporting, for example, to the client or
project manager. The requirements manager also coordinates changes.

The requirements management plan ensures that the requirements engineering process can
be monitored actively and that subsequent decisions can be taken consciously and such that
they can be traced. This does not mean that requirements engineering is not an iterative,
incremental, and creative process: it merely means that the requirements engineering process
should be planned creatively and consciously and should not be chaotic!

This handbook supports the requirements manager in the creation of the requirements
management plan by explaining the concepts and terms required for the plan and presenting
appropriate methods.

This book also shows how requirements engineering and requirements management can be
implemented in agile projects—after all, requirements (e.g., user stories) are also documented
in agile projects and such projects must also be able to handle changes, prioritization, etc.

In practice, it is difficult to imagine specifically implementing requirements management in
complex projects without using tools. Therefore, in the last chapter of the book, we describe
options for support from requirements management tools, as well as the limitations of these
tools.

With these topics, the handbook for the Advanced Level Requirements Management
- Practitioner - and Advanced Level Requirements Management - Specialist - of the IREB
Certified Professional for Requirements Engineering (CPRE) provides you with the know-how
you need to manage requirements consciously and in a structured manner.

We hope you enjoy reading the book!

More information on the IREB Certified Professional for Requirements Engineering —
Advanced Level Requirements Management - Practitioner - and - Specialist - can be found at:
http://www.ireb.org.

http://www.ireb.org/

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page viii/ 239

Foreword

This Handbook for Requirements Management Practitioner and Specialist according to the IREB
Standard supplements the syllabus of the International Requirements Engineering Board for
the Advanced Level module Requirements Management Pactitioner and Specialist Version
2.0.0 dated July 1, 2022 and is based on the IREB Glossary [Glin2014].

The target audience for the handbook includes both training providers who want to offer
seminars on Requirements Management Practitioner and/or Specialist according to the IREB
standard, and training participants and interested parties who want a detailed view of the
subject matter for this Advanced Level module and of requirements management according
to the IREB standard.

This handbook is not a substitute for training or educational books on the topic. The handbook
in fact represents a link between the compact syllabus (which merely lists and explains the
learning objectives of the module) and the multitude of literature that has been published on
the topic of requirements management in recent decades.

Together with the references to additional literature, the content described in this handbook
is intended to support training providers in preparing training participants specifically for the
certification exam. This handbook offers training participants and interested parties the
opportunity to expand their knowledge in the area of requirements management and to work
through the detailed content based on literature recommendations. Furthermore, the
handbook is also intended as a reference—for example, for refreshing knowledge about the
various topic areas in requirements management after successful certification.

In addition to the content that expands on the syllabus and is relevant for the
exam, in each chapter, the handbook offers explanatory examples based on a
continuous case study. The case study is identified by the icon shown here on
the left. The content in the case study is not directly relevant for the exam but
is highly recommended to allow a better understanding of the other content in
the handbook.

We also offer interested readers information which goes beyond the exam and which is not
relevant for the exam. Where this additional content fits within the flow of the material, it has
been integrated in the respective chapter and flagged as not relevant for the exam with a red
marking to the side (see right).

The additional content in Annexes A to C is also not relevant for the exam.

We are happy to receive any suggestions you might have for improvements or corrections.

E-mail contact: requirementsmanagement.guide@ireb.org

We hope you enjoy reading this handbook and wish you good luck with the certification exam
for the IREB Certified Professional for Requirements Engineering Advanced Level
Requirements Management - Practitioner - or for IREB Certified Professional for
Requirements Advanced Level Management - Specialist.

Stan Bühne
Andrea Herrmann
Autumn 2015

mailto:requirementsmanagement.guide@ireb.org

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page ix/ 239

Version History

Version Date Comment Author

1.1.0 September 1, 2019 Initial English version based on
German version 1.1.0

Stan Bühne, Andrea
Herrmann, Frank
Houdeck, Stefan
Sturm

2.0.0 July 1, 2022 Inclusion of the Advanced Level split
in Practitioner and Specialist

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 10/ 239

1 What Is Requirements Management?

This chapter initially defines why requirements management is important, for whom and for
what purpose it is important, what tasks requirements management includes, and who
performs these tasks.

1.1 Definition of Requirements Management

As is the case for many terms, there are different definitions for the term "requirements
management". The relationship between requirements management (RM) and requirements
engineering (RE) is also not defined uniquely. Sometimes, requirements management is
deemed to be part of requirements engineering (as is the case for the CPRE Foundation Level
[IREB 2015]); and in other cases, requirements engineering is deemed to be part of
requirements management (e.g., in [Schi2001]). In contrast, the CMMI [SEI2011] awards both
requirements management and requirements engineering equal value.

Definition 1-1: We define requirements management as part of requirements engineering.

Requirements engineering is therefore more extensive.

• Requirements engineering is a systematic and disciplined approach to the specification and

management of requirements with the following objectives:

1. Knowing the relevant requirements, establishing consensus among the stakeholders about the

requirements, documenting the requirements in compliance with given standards, and

managing the requirements systematically

2. Understanding and documenting the stakeholders' desires and needs

3. Specifying and managing requirements to minimize the risk that the system that does not meet

the stakeholders’ desires and needs [Glin2014] and [PoRu2011].

• Requirements management: the process of managing existing requirements and

requirements-based artifacts. In particular, this includes documenting, changing, and tracing

requirements [Glin2014]. It also includes managing the requirements engineering process,

which means planning, controlling, and checking the requirements engineering process.

In the following, we state some additional definitions to show the diversity that exists in
professional literature. The IREB has defined a clear definition so that certified requirements
managers and requirements engineers always mean the same thing when they use a
particular term. Unambiguous terms not only simplify collaboration in professional life; when,
as recommended in the introduction to this handbook, the role of the requirements manager
is introduced in addition to the role of the requirements engineer, the definition of the
relationship between the two disciplines (requirements engineering and requirements
management) defines the division of tasks across these two roles.

What Is Requirements Management? 11

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 11/ 239

Ebert [Eber2012] also defines the following: "Requirements management (RM) is a part of
requirements engineering that is concerned with the maintenance, management, and further
development of requirements in the lifecycle." This lifecycle is very important with regards to
requirements engineering. Accordingly, it is not enough to simply collect requirements once.
Changes must be managed over the entire lifecycle of the software/system. Note that not only
the software/system itself but also each individual requirement goes through its own
lifecycle.

According to Pohl [Pohl2010], requirements management can be divided into three main
subactivities:

1. Observation of the system context to reveal context changes

2. Management and execution of the requirements engineering activities (i.e.,
requirements management as process management)

3. Management of the requirements and related artifacts during the development process

According to the ISO/IEC/IEEE 29148:2011 [ISO29148] standard, requirements management
is defined as "activities that ensure requirements are identified, documented, maintained,
communicated and traced throughout the life cycle of a system, product, or service".
Requirements management involves not only the management of the requirements, but also
all information associated with the requirements: "Maintain throughout the system life cycle
the set of system requirements together with the associated rationale, decisions and
assumptions." ([ISO15288], 6.4.2.3 b)

To illustrate the definitions and recommendations in this handbook, we use
the example of an online banking system. We assume that the system already
exists. The system was developed based on a complete and quality-assured
requirements specification according to the standard norms. However, this is
not enough. The requirements for the system change: due to changes in law
(e.g., the changeover to SEPA); through continuous efforts to make online
banking more secure but keep the same level of user-friendliness; or to make
online banking more user-friendly with the same level of security; through
technical innovations; through ideas from product management for new
functionality; or through changes to business processes at the bank that have
an effect on online banking. The objective now, despite these many change
ideas that come from all directions, is to keep an overview of the
requirements, estimate in advance what the costs and other consequences of
implementing an idea would be, and to justifiably implement, defer, or reject
the changes. Furthermore, all stakeholders (such as the IT department,
product management, the executive board, the data protection officer, and the
Customer Advisory Board) must be included in the process. Even our
requirements engineer is a stakeholder.

Our requirements engineer is Peter Reber. He is 35 years old and has been
working at our example bank for 10 years. He knows all the stakeholders well
and is happy to contact them for no specific reason, simply to find out if there
is any news about anything. The online banking was successfully introduced
before Peter started working at the bank. Since being trained by his
predecessor, Peter has been solely responsible for conscientiously managing
the requirements for online banking according to the rules of requirements
engineering.

12 What is Requirements Management?

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 12/ 239

However, his peaceful days are ending as the entire online banking is being
changed to a new corporate design, with new colors, new fonts, technical
terms, and logos. The bank wants to take this opportunity to introduce new
functionality to increase safety and user-friendliness. A group of experts will
soon be collecting or defining change requirements, which means that they
will be performing requirements engineering: several external business
analysts are analyzing the business processes, a team of IT security experts is
conducting risk analyses, the usability expert is designing alternative interface
designs and improving accessibility, and a moderator is holding an ideas
workshop with the Customer Advisory Board. All of these people are
performing requirements engineering. Peter Reber's task is to organize and
coordinate their work. This means that while they are performing
requirements engineering, Peter is taking care of the requirements
management.

1.2 Tasks in Requirements Management

Here we define the tasks that make up requirements management. This definition is therefore
also a role description: the requirements manager is responsible for requirements
management and either performs the tasks belonging to requirements management or
monitors the performance of the tasks by other persons.

Three main constraints [RuSo2009] make the requirements management tasks more
complex:

▪ Requirements have to be used by multiple persons

▪ Requirements are supposed to be reused.

▪ Requirements change.

Requirements management is responsible for providing the rules and techniques required so
that requirements and other information can be stored in such a way that everyone involved
can find what they need. This must be planned in advance. Therefore, before the requirements
engineering process begins, the requirements manager creates the requirements
management plan (RMP).

Definition 1-2: The requirements management plan covers:

• The requirements landscape—that is, the types of requirement artifacts to be managed and

the level of detail they contain (see Chapter 2)

• Attributes and views of the requirements (see Chapter 3)

• Prioritization criteria and methods (see Chapter 4)

• Version management for requirements and the change process (see Chapter 5)

• Managing the traceability of requirements (see Chapter 6)

• Variant management (Chapter 7)

• Reporting (Chapter 8)

What Is Requirements Management? 13

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 13/ 239

• The requirements engineering process and activities to improve this process (Chapters 9 and

10)

• Tools to be used (Chapter 11)

In the following chapters, this handbook looks at the content of the requirements
management plan and proposes different methods for the respective activities to be
performed. At the end of each section there is a summary of the content that the requirements
management plan should contain.

During the requirements engineering process, within the scope of requirements management,
these tasks are performed according to the plan: views and reports are created and updated,
requirements are selected for releases, changes are managed and prioritized systematically,
product lines are defined and managed, tools are introduced, and the requirements
engineering process is monitored and improved.

Requirements management is planned and executed by the requirements engineer or by
someone exercising the separate role of a requirements manager. The relationship between
the requirements manager and the requirements engineer is like that of the relationship
between the quality manager and a tester. This division of tasks makes sense when, in
complex projects with a critical schedule, there is so much work for requirements engineering
and requirements management that multiple persons have to collect, align, and manage
requirements. A role is then required that sets up and monitors the process and merges and
evaluates information.

Peter Reber's first task is therefore to create the requirements management
plan. He could also organize the creation of the plan by somebody else. In our
case, due to his vast experience, Peter creates the requirements management
plan himself. He can, of course, request help from the many requirements
engineering experts available and should in any case agree the plan with these
experts. It may be the case that the experts have special requirements for
requirements management. In this handbook, we accompany Peter and his
team through their tasks step by step.

1.3 Goals and Benefits of Requirements Management

The goal of requirements management is to manage requirements and other artifacts related
to requirements (e.g., interview logs and the customer requirements specification) in such a
way that the requirements can be systematically scanned, grouped, evaluated, changed, and
tracked with reasonable effort. Requirements management thus attempts to meet the needs
of many different stakeholders simultaneously. The needs are essentially dependent on the
specific project context. They differ, for example, in projects for customer-specific software or
product development compared to internal projects performed by the IT department.

Amongst other things, requirements management provides answers to the following
questions, based on the techniques given in parentheses:

▪ What different types of requirements are there? (Requirements landscape)

▪ To what levels of detail are requirements documented? (Requirements landscape)

▪ Which requirements have already been accepted? (Assignment of attributes)

14 What is Requirements Management?

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 14/ 239

▪ Which requirements come from which source? (Assignment of attributes)

▪ Which requirements are urgent and important and therefore candidates for the next
release? (Evaluation and prioritization)

▪ Which requirement generates costs that are too high with too few benefits?
(Evaluation and prioritization)

▪ Which requirements belong to a specific software baseline? (Version management)

▪ Which version of the requirement was implemented in the system? (Versioning)

▪ Who was the last person to change the requirement and why did they change it?
(Versioning)

▪ Which technical component belongs to which requirement? (Traceability)

▪ Which test cases belong to which requirement? (Traceability)

▪ Which requirement is part of the system/product delivered? (Traceability)

▪ How do the two variants of the product differ? (Variant management)

▪ What proportion of the requirements has already been implemented and tested?
(Reporting)

▪ How long does it take on average for a change request to be implemented? (Reporting)

▪ Has the requirements engineering process been improved by a specific measure?
(Reporting)

In principle, requirements management is worthwhile not just for larger projects but also for
small projects. However, for small projects with a low level of complexity, the core team often
performs requirements management in their head, yet still knows exactly when which
requirement was changed and why.

Requirements management is more important and more difficult [RuSo2009]…

▪ ... the greater the number of requirements that exist

▪ ... the longer the estimated lifetime of the product is

▪ ... the greater the number changes that are expected

▪ ... the larger the number of participants in the requirements engineering process is

▪ ... the more difficult it is to reach or involve the stakeholders

▪ ... the higher that the quality demands on the system are

▪ ... the greater the level of reuse that is to be performed

▪ ... the more complex the development process is

▪ ... the more inhomogeneous stakeholders' opinions are

▪ ... the greater the number of releases that will be developed

▪ … the more important the use of standards is for the project

What Is Requirements Management? 15

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 15/ 239

Good requirements management … [RuSo2009]

▪ ... increases the quality of requirements, products, and processes

▪ ... reduces project costs and project duration

▪ ... makes it easier to monitor complex projects during all phases

▪ ... improves communication within and among teams

▪ ... increases customer satisfaction

▪ ... reduces the project risk

Requirements management is a complex task: every stakeholder should be able to access up-
to-date information at all times and should also be informed about changes that affect them,
but without overloading them with unnecessary information. This should also apply even if
the stakeholders are spread around the world and when contact persons change. At the same
time, however, data protection regulations must be complied with and each person must be
able to access only that information that they need to do their job. The data collected by
requirements management leads to a certain complexity—not solely as a result of the pure
quantity of requirements and associated information, but also from mutual dependencies
between requirements and the temporal dimension of versions and requirements baselines.

Requirements management simplifies requirements engineering:

▪ Structuring of requirements and the requirements document (e.g., via assignment of
attributes, sorting, and filtering)

▪ Standardization of terminology (e.g., via a glossary)

▪ Definition of clear processes and work steps to be performed (e.g., in the change
process)

For Peter Reber, therefore, there is no question of the benefits of requirements
management. The expectation is that the large number of stakeholders and
requirements engineers will produce a large number (perhaps even too large)
of change requirements. The requirements must be aligned with one another
and the most relevant requirements selected for the first release. Of course,
like most projects, this project is under pressure from a time perspective and
has only a fixed budget that has been defined in advance.

1.4 The Requirements Management Plan

The necessity of a project management plan [PMI2013] is something that has been known in
project management for years. This plan describes how a specific project is to be executed. In
addition to the project schedule, the plan contains the planning, details of how, for example,
risk management is to be performed, how communication and discussions should take place,
who is responsible for what, etc. The plan enables the project manager to bring all project
team members to the same level of information about how work is to be performed within the
project. The plan also provides the opportunity to control the process.

16 What is Requirements Management?

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 16/ 239

The requirements management plan (RMP) is very similar to the project management plan.
Amongst other things, the requirements management plan describes the planning for how the
requirements engineering process is to be set up, who is responsible for what tasks, which
requirements are to be documented and how they are to be documented, how these
requirements are to be managed, whether tools are to be used and, if so, which tools. In brief,
the requirements management plan describes all aspects that must be considered in
requirements engineering and requirements management for a new development or for the
continued further development of a product, for example. The requirements management
plan thus describes the framework for the entire requirements engineering process.

In the following chapters, we describe the main content of requirements management and in
each chapter, we point out which of the aspects described should be included in a
requirements management plan. Annex A also contains a template for a requirements
management plan for your own use.

Note: In practice, the requirements management plan is often not an independent document but

rather part of the project plan, the configuration management plan, or other specification

documents for the development process. The structure of the requirements management plan in

the annex should essentially give you a framework for this topic.

1.5 Relevant Standards

To ensure that software and technical systems are developed to a high quality in such a way
that they can be traced and repeated, various standards have been developed. These
standards describe the activities to be performed, the artifacts to be created, and the
techniques to be applied. The standards universally recognize requirements management as
making an important contribution to ensuring the quality of results. The standards therefore
also make statements about the execution of requirements management. However, the
statements of the various standards are not necessarily consistent and compatible with one
another. For example, the standards use different terms for one specific artifact and suggest
different chapters respectively.

Some important standards that cover the entire software or system development process, and
thereby also make statements about requirements engineering and requirements
management, are the following:

▪ The process capability maturity model integration, CMMI (Version 1.3) [SEI2010],
considers, amongst other things, the processes "requirements development" and
"requirements management", whereby some of the assigned objectives differ
significantly from the definitions of the IREB.

▪ ISO 9000/ISO 9001 [ISO 9000] is a standard for quality management in organizations.
ISO 9001:2008 ("Quality Management Systems - Requirements") defines minimum
requirements for a quality management system and describes, for example,
requirements for product realization as well as measurement and improvement and
thus addresses topics such as identifiability or traceability of requirements (see Clause
7.5.3, "Identification and Traceability").

What Is Requirements Management? 17

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 17/ 239

▪ ISO/IEC 12207:2008 [ISO12207] and 15288:2008 [ISO15288] ("Software life cycle
processes" and "Systems and software engineering - Systems life cycle processes") define
all processes for systems and software development. The tasks "System requirements
analysis" and "software requirements analysis" from ISO/IEC 12207 and "Stakeholder
Requirements Definition Process" and "Requirements Analysis Process" from ISO/IEC
15288 cover the activities of requirements engineering and requirements management.

IEC 61508 [DIN61508] ("Functional safety of safety-related
electrical/electronic/programmable electronic systems") deals with the definition of
requirements for the functional safety of systems and their implementation, including
quantitative safety assessments. Particular attention is given to the topic of traceability.
The standard defines safety integrity levels (SIL) 1 to 4, which describe the risk.

The higher the level, the greater the potential risk, and thus the greater the requirements
for system reliability.

▪ SOX (Sarbanes-Oxley Act) [USCo 2002] is a US federal law in response to accounting
scandals which is intended to improve the reliability of reporting by companies listed
on the public capital market in the USA. In essence, the core of the Sarbanes-Oxley Act is
about knowing who made what changes when, and thus also relates to the core tasks of
requirements management.

Requirements engineering and requirements management can be found in the following
standards, for example:

▪ VDI guideline 2519 sheet 1 - The procedure for the creation of customer requirements
specifications/system requirements specifications [VDI2001] is the German standard
for describing customer requirements specifications and system requirements
specifications.

▪ IEEE 830-1998 ("Recommended Practice for Software Requirements Specifications")
[IEEE830] defines terms for requirements engineering and requirements
management—in particular, quality properties of requirements and the chapters
involved in a specification (“software requirements specification”). Many of these
definitions have also been included in the CPRE Foundation Level [IREB2015].

▪ ISO/IEC/IEEE 29148:2011 ("Systems and software engineering – Life cycle processes –
Requirements engineering") [ISO29148] defines quality properties and attributes of
requirements and recommends iterative handling of requirements over the entire
lifecycle.

▪ IEEE Standard 1233 "Guide for Developing System Requirements Specifications"
[IEEE1233] describes the development of requirements and specifications and the
management of these in the entire product development. The standard describes the
collection and definition of requirements, change management, and the organization of
requirements in a project.

▪ ISO/IEC 14102:1995 ("Evaluation and Selection of CASE Tools") [ISO14102] describes
requirements for CASE tools—that is, tools for computer-aided software development—
but can also be used to select requirements engineering and requirements management
tools.

18 What is Requirements Management?

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 18/ 239

▪ ISO/IEC 25010:2011 ("Systems and software engineering — Systems and software
Quality Requirements and Evaluation (SQuaRE) — System and software quality models")
[ISO25010] describes two quality models for non-functional requirements: one for
"Quality in use", and one for the product quality. These quality models can be used to
collect and specify non-functional requirements of software and computer systems in a
standardized way.

▪ ISO 29110 ("Lifecycle process standard for Very Small and Medium Entities (VSME)")
[ISO29110] describes a system lifecycle, including requirements engineering, for small
and medium-sized units, so for projects with less than approx. 25 persons.

▪ The European standard ISO 9241 [ISO9241], which is also recognized as a DIN standard,
describes guidelines for human-computer interaction—specifically, both a list of quality
requirements that a user-friendly software must contain, and the development and
testing process for such software.

There are also industry-specific standards, such as DO 178 B/ED-12B and DIN EN 14160 for
aviation, IEEE/EIA Std. 12207:1998 for the military, FDA-535, FDA-938, and EN62304 for
medical engineering, EN 50128 for railway technology, or ITU X.290-X.296 (ISO/IEC 9646-x)
or ETSI ES 201 873-x (TTCN-3) for telecommunications.

These standards do not apply automatically and above all, they do not apply simultaneously,
as they are not completely compatible with one another. Each company and each project
selects the appropriate standards which they then apply in the original or an adapted form.
Sometimes, the customer requires compliance with a specific standard.

In addition to the standards and guidelines referred to above, company-specific standards of
the software manufacturer or the customer must also be observed. In turn, these can be
developed based on public standards and can contain aspects of requirements engineering
and requirements management.

Due to its comprehensibility and the fact that the contents are closely related
to practice, for his work, Peter Reber uses this IREB Handbook for
Requirements Management, which has been developed from standards. The
company guidelines for the implementation of IT projects and the new
corporate identity also apply.

1.6 Literature for Further Reading

For further reading, we recommend the standards detailed in the previous section.

Further definitions can be found in the IREB Glossary [Glin2014].

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 19/ 239

2 Requirements Information Model

In this chapter, we look at how you can define the different aspects of your project-specific
requirements landscape and describe them with a requirements information model.

When documenting requirements, we repeatedly encounter a number of basic questions that
have nothing to do with the specific content of requirements, but which must be defined at an
early stage, for example:

▪ What are the different types of requirements that exist and that have to be considered?

▪ How can requirements be classified according to their solution dependency?

▪ How should these requirements be documented and presented?

▪ To what level of detail must the requirement be described?

These questions should generally be clarified at the beginning of the requirements
engineering process. However, projects do not always run as ideally as desired. Sometimes,
projects are taken over from third parties who have not made any specifications of this type.
Sometimes, the constraints at the beginning of a project do not allow you to create a
requirements management plan or to think about the structure of requirements, and
therefore, initially you merely "collect" requirements without classifying them. What is
important, however, is that at a given time—as early as possible—you plan your requirements
landscape. As the requirements manager, as well as being responsible for managing the
requirements artifacts, you are responsible for managing the activities in the requirements
engineering process, which means planning, monitoring, and controlling these activities
appropriately (definition 1-1).

Definition 2-1: Requirements artifact according to [Pohl2010]: "A requirements artifact is a

documented requirement".

Therefore, whenever we refer to requirements artifacts in the subsequent chapters, we are
referring to a documented requirement. In contrast, when we use the more general term
"artifact", we are referring to documented artifacts at different development levels: for
example, test cases, architecture descriptions, etc. (see IREB Glossary [Glin2014]).

Definition 2-2: Requirements landscape: A requirements landscape is a specification of the:

1. Classification to be used for the types of requirements

2. Classification to be used for the independence of the requirement from a solution

3. Required levels of abstraction (detailing levels) for each type of requirements artifact

4. Forms of presentation to be used for each type of requirements artifact

20 Requirements Information Model

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 20/ 239

In the following sections, we look at the different dimensions of the requirements landscape
and provide information about the points in the landscape that a requirements manager has
to think about in order to create a "requirements information model" (RIM) to describe the
requirements landscape.

2.1 Basic Principles (Classification of Requirements)

When we talk about requirements, we are often talking about the different forms of a
requirement. A requirement can be differentiated, for example, by its level of detail.
Requirements can be very detailed and describe a specific function, but they can also be a very
abstract requirement for the overall system. Apart from the level of detail, requirements can
also differ in the type of content they contain. For example, a requirement can describe the
quality of a system (e.g., correctness) or require functional properties. Requirements can also
differ in their independence from a solution; they can be generic product objectives, for
example, in contrast to requirements for the data structure. In principle this is nothing new,
and it has already been mentioned in the Certified Professional for Requirements Engineering
– Foundation Level [IREB2015].

Therefore, for better orientation and to enable you to construct your requirements landscape
more specifically, we want to classify requirements according to the following dimensions:

▪ the type of requirement

▪ the independence of a requirement from a solution

▪ the level of detail (or abstraction level) of a requirement

The dimensions referred to above are orthogonal to one another, which means that even at a
level with a high level of detail, there are goals, for example—that is, requirements that are
independent of a solution.

2.1.1 Classification by Type of Requirement

The following question is often raised in requirements management: "What types of
requirements have to be considered during collection and documentation?". This question can
be answered with a quick look back at the Certified Professional for Requirements
Engineering – Foundation Level [IREB2015].

▪ Functional requirements: Functional requirements describe the functionality that the
planned system should provide. These requirements describe what the planned system
should be able to do—for example, which data a customer needs for authorization at an
ATM to authorize a withdrawal of cash.

Definition 2-3: Functional requirement according to [PoRu2011]: "A functional requirement is a

requirement concerning a result of behavior that shall be provided by a function of the system."

▪ Quality requirements: Quality requirements describe desired qualities of the planned
system and thereby influence the system architecture. This class describes, for example,
requirements with regard to the reliability, security, scalability, or performance of the
planned system or individual functions.

Definition 2-4: Quality requirement according to [PoRu2011]: "A quality requirement is a

requirement that pertains to a quality concern that is not covered by functional requirements."

Requirements Information Model 21

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 21/ 239

▪ Constraints: Constraints are organizational, legal, or technical specifications (usually
limitations) for the realization of the planned system. They can be a wide variety of
conditions, starting with time-based specifications for implementation, through to
specific technology specifications for implementation.

Definition 2-5: Constraint according to [PoRu2011]: "A constraint is a requirement that limits the

solution space beyond what is necessary for meeting the given functional requirements and the

quality requirements."

The characteristics of the different types of requirements and their further categorization are
discussed in detail in literature (see [Pohl2010]; [PoRu2011]; and [Eber2012]).

In addition to the classification of requirements introduced above, requirements engineering
literature contains further classifications for which an association to the three types of
requirements referred to above can be established, for example:

▪ [RuSo2009]: functional requirements, technology requirements, quality requirements,
requirements for the user interface, requirements for other components delivered,
requirements for activities to be performed, legal contractual requirements

▪ [WiBe2013]: business requirements, business rules, constraints, interface
requirements, features, functional requirements, non-functional requirements, quality
requirements, system requirements, user requirements

▪ [RoRo2014]: functional requirements, non-functional requirements, constraints

▪ [Youn2014]: business requirements, user requirements, product requirements,
environment requirements, system requirements, functional requirements,
performance requirements, interface requirements, etc.

However, it is not the classification you use to differentiate between requirements that is the
decisive factor for good requirements management, but rather the awareness of the existence
of different types of requirements that have to be considered to describe the desired change
or the planned system completely.

None of the requirement type classifications presented in this chapter is a generally valid
standard. The point of this information is merely to illustrate the wealth of types of
requirement that have become established in recent years.

2.1.2 Classification according to the Dependence of Requirements on
a Solution

Regardless of the type of a requirement, requirements often demonstrate very different levels
of dependence on a solution. Therefore, in descriptions of requirements, we often find a mix
of:

▪ Goals to be achieved with a system (usually an almost solution-independent description
of the goal to be achieved—for example, easier and more secure access to cash for all
bank customers)

▪ System processes to be supported by a system (usually only an indirect reference to a
solution by means of technical specifications for the desired system behavior or process
flow—for example, description of a process for authentication at an ATM)

22 Requirements Information Model

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 22/ 239

▪ Specific properties and characteristics that a system should fulfill (usually direct
dependence on a solution by means of technical and operational specifications for the
desired system—for example, unique specification of the relevant data for
authenticating a user at ATMs) .

To consciously differentiate between the requirements with a different solution dependency,
we recommend that you explicitly classify requirements artifacts dependent on the reference
to a solution or the dependence on a solution—for example, as goals, scenarios, and solution-
dependent requirements (see [Pohl2010]).

Goal-oriented descriptions (goals):

▪ Goal-oriented descriptions document (by means of goals) the intention of the system
without addressing the implementation (solution). They are therefore the most abstract
form of a documented requirement and require, for example, that a customer must be
able to withdraw money from their account in any city—regardless of how that can be
implemented.

▪ Goals can be described, for example, in natural language in pure text form, with and-or
trees, or with independent notations such as i*. Regardless of the form of presentation,
the main point of goals is to achieve a system understanding to thus recognize the
required added value of the planned system.

Scenario-oriented descriptions (scenarios):

▪ By way of example, scenario-oriented descriptions document (using scenarios) the
desired process to be supported from the user perspective (sometimes also from the
system perspective). Scenarios thus describe possible sequences of interactions to fulfill
one or more goals. They often supply the context required for the requirement by, for
example, describing the process of withdrawing money at an ATM. Scenarios therefore
usually cover several atomic requirements.

▪ Scenarios can be described, for example, with structured templates (e.g., use case
templates) in pure text form as a type of story, or based on models using activity
diagrams, business process models (e.g., BMPN), sequence diagrams, etc.—see IREB
CPRE Advanced Level "Requirements Modeling" [CHQW2022].

Solution-oriented descriptions (solution-based requirements):

▪ Solution-oriented descriptions document (using solution-based requirements) specific
requirements for, for example, the functionality or performance of a system or
individual components. They describe the data, functions, system behavior, statuses,
and quality required to fulfill the goals and to implement the scenarios. They must
therefore be understood as "classic" requirements which must result in a solution—for
example, "After successful authorization, the system must give the customer the
opportunity to withdraw cash amounts of between €50 and €500. The selected amount
must be divisible by €10 to enable disbursement."

▪ Solution-oriented requirements can be described in either natural language as classic
textual requirements, or via model-based notations (e.g., UML). Solution-oriented
requirements generally cover all requirements for the classic system views: data,
functions, and behavior of the planned system. They are therefore the most specific
descriptions, see IREB CPRE Advanced Level "Requirements Modeling" [CHQW2022].

Requirements Information Model 23

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 23/ 239

2.1.3 Levels of Detail for Requirements—Twin Peaks Model

In practice, detailing requirements is only rarely a strict, sequential (waterfall) process that
begins with rough requirements artifacts and then turns these step by step into requirements
artifacts at a fine level of detail which, in the next step, are then used as the basis for the
creation of a system architecture. In real life, at the beginning of the process, there are usually
requirements with very different levels of detail on the one hand, and on the other hand, an
early interaction between requirements and system architecture, which means that there are
mutual influences between the system architecture or solution decisions and the
requirements.

Figure 1: Twin peaks model

Figure 1 illustrates this relationship in the twin peaks model [Nuse2001]. The vertical axis
represents the level of detail of the requirements or the system architecture, while the
horizontal axis represents the solution dependency, that is, the increasing alignment from
problem description to implementation. The figure shows that an increasingly detailed
requirement description (on the left) is developed iteratively in parallel with an increasingly
detailed system architecture (on the right), and that the description and the architecture
supplement each other. Although the figure shows, for simplification purposes, the same
levels for the detailing of the requirements and for the system architecture, different levels of
detail are in fact possible. The intention behind the figure is essentially to show the necessity
for different levels of detail for documenting requirements (see also [BBHK2014]).

24 Requirements Information Model

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 24/ 239

Unfortunately, there is no general agreement on the number of levels of detail that are
required and useful on the requirements side. The required level of detail for requirements
depends on many factors, as the following examples show:

▪ System context and domain: If only a small change is to be executed within a well-
known system environment, a lower level of detail may be necessary than for a
completely new development.

▪ Expertise and proximity of the stakeholders: In a project environment with
experienced and skilled requirements engineers, architects, developers, and testers, a
lower level of detail is often required than would be the case for a distributed project
team and development team with supplier relationships.

▪ Accepted levels of freedom in the implementation: In a project environment in
which the client and stakeholders are thinking purely in terms of results, and the way in
which the result is achieved is irrelevant (e.g., representation of account movements),
the solution space has to be less restricted with requirements details than in an
environment where security is critical (e.g., authorization on login).

For the reasons listed above, the number of detail levels or the level of detail of the
requirements must be defined on an individual basis (e.g., on a project-specific basis). This
level of detail can differ even within a project depending on the specific system object under
consideration. In principle, a requirement should be detailed to the extent that:

▪ All stakeholders have reached a common understanding of the requirements and it is
clear to everyone exactly what is required. This is particularly true for the group of
stakeholders who have to implement the requirement.

▪ The remaining degrees of freedom for the design of the solution are so small that further
precision would generate more costs than benefits. This means that the requirements
must be detailed to an accepted residual risk that, due to the remaining degrees of
freedom, an undesired solution will arise.

▪ The requirements are specified to the extent that the subsequent solution is clearly
verifiable (testable) by means of the requirements—that is, the solution can be
accepted based on the specification.

Note: Three levels of detail have proven to be worthwhile in many projects—even though these

levels often bear different names, this has proven to be a practicable level of detail (e.g., product

requirement level, user requirement level, system requirement level).

Literature also offers a number of suggestions for structuring requirements at different levels
of detail.

▪ [WiBe2013] suggests classifying requirements as "business requirements", "user
requirements", and "system requirements". [Eber2012] proposes detailing requirements
via a classification according to market, product, and component requirements.

▪ [RuSo2009] describes five levels of detail, from the rough overall intention with its goals,
through to technical specification and separation into hardware, software, and other
components.

▪ [PHAB2012] defines three levels of details for the domain of embedded software-
intensive systems (embedded systems): "functional layer", "logical layer", and "technical
layer".

Requirements Information Model 25

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 25/ 239

▪ [BBHK2014] also describes three levels of detail, "system layer", "function group layer",
and "hardware/software layer" for detailing requirements for software-intensive
embedded systems.

2.2 Forms of Presentation for Documenting Requirements

There are a number of different forms of presentation (or rather, forms of description) for
documenting requirements. The form of presentation used to document requirements
depends on various factors, for example:

▪ Purpose of the documentation (e.g., formal check, review, discussion)

▪ Recipient of the information (e.g., product manager, architect, tester, developer)

▪ Classification of the requirement (e.g., use case, performance requirement)

The form of presentation is also dependent on the experience and the personal "preferences"
of the person documenting the requirement.

In the following, we differentiate between the following forms of presentation for
documentation:

▪ Textual presentation of requirements using natural language: Natural languages
(e.g., German, English, Spanish) are languages which are used on a daily basis to
document and exchange information. In textual descriptions, we find the following
forms of presentation for requirements, for example:

o Pure prose

o Phrase templates (e.g., "THE SYSTEM must/should/will PROCESS VERB")

o Structuring templates (e.g., to describe use cases)

▪ Model-based presentation of requirements using modeling languages: In
comparison to natural languages, modeling languages are languages created artificially.
Modeling languages for documenting requirements include:

o Unified Modeling Language (UML)

o Business Process Model and Notation (BPMN)

o Event-driven Process Chain (EPC)

o System modeling language (SysML)

o Entity relationship model (ERM)

o Petri nets

▪ Formalized presentation of requirements with formal languages: Formal languages
are also artificially created languages. With formal languages, the focus is on a
description that is free of contradictions, rather than on communication. Formal
languages include:

o Mathematical-algebraic descriptions

o Set theory forms of description

o Logical descriptions and operators

26 Requirements Information Model

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 26/ 239

To make the documentation in the requirements engineering process—and the management
and maintenance of the documentation as part of requirements management—manageable,
as the requirements manager, you should define, as early as possible, which type of
requirement is to be persisted, with what solution dependency, at what level of detail, and
with what form of presentation.

You should also define, at an early stage, the language in which textual and model-based
requirements are to be documented to avoid unnecessary duplicated effort for subsequent
translation.

Note: The language of the requirements is usually determined by the project language or the

national language of the stakeholders and suppliers involved. However, you can also define, for

example, that requirements from departments are documented in the national language (e.g., in

German for projects in Germany) to achieve greater involvement and acceptance, and that system

requirements that have to be implemented by a supplier are documented in English—that is, the

documentation language can be different depending on the level of detail.

2.3 Describing a Requirements Landscape with a
Requirements Information Model

In this chapter, we explain how you can describe a requirements landscape and document it
with a requirements information model (RIM). As explained in definition 2-2, a
requirements landscape defines the following dimensions:

▪ Classification to be used for the types of requirements

▪ Classification to be used for the dependence of requirements on a solution

▪ Required levels of detail for each type of requirements artifact

▪ Forms of presentation to be used for each type of requirements artifact

You can use a tabular list to describe the requirements landscape. Here, you document the
different dimensions of the requirements landscape (type of requirement, solution
dependency, levels of detail, form of presentation). Table 1 shows an example of a
requirements landscape.

Requirements Information Model 27

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 27/ 239

 Solution Dependency

Level of detail Requirement
type

Low (Goal) Medium
(Scenario)

High (Solution-
Based Req.)

Level of detail 1:
Business level

Constraint Business goal

(textual)

Not relevant Not relevant

Quality requirement Service quality

(textual)

Not relevant Not relevant

Functional

Requirement

Not relevant Business process

(BPMN)

Business rule

(textual)

Level of detail 2:
User level

Constraint Usability goal Not relevant Not relevant

Quality requirement Not relevant User interface (mock-up)

Not relevant

Functional

Requirement

Not relevant User use case (use case
diagrams, templates)

User requirement

(textual, ER models)

Level of detail 3:
System level

Constraint Not relevant Not relevant Interface guidelines

(textual)

Quality requirement System quality goal

(textual)

Not relevant System quality

(textual)

Functional

Requirement

Not relevant System use case (MSC,
AD)

Interface requirements
(textual, MSC)

Table 1: Example definition of a requirements landscape

Column 1 contains the description of the levels of detail (here, Level of detail 1: Business level,
Level of detail 2: User level, and Level of detail 3: System level). Column 2 contains the
classification by requirement type (here, constraint, quality requirement, and functional
requirement). Columns 3–5 describe the dependency of the requirement on the solution by
classification into goals, scenarios, and solution-based requirements. This table therefore
describes all combinations theoretically possible for types of requirements artifacts.

Via the cells, you can select which types of requirements artifacts are relevant or not relevant
for your specification. For the relevant requirements candidates (requirements class), you
can now define the desired forms of presentation for each artifact type for your requirements
landscape (e.g., user level, solution-based description for functional requirements is via
entity-relationship models or in text form). Here, you can also assign a dedicated, company-
specific designation (e.g., user level, solution-based description for functional requirements =
user requirements) to the selected requirements candidates.

When defining the requirements landscape, you always have to balance the benefits that more
extensive requirements documentation would provide against the costs that would be
incurred (see [Glinz 2008], [Davis 2005]). It may well be the case, for example, that you
describe requirements only at two levels of detail, based on scenarios and solution-based
requirements.

28 Requirements Information Model

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 28/ 239

However, the requirements landscape should be defined explicitly—and not just by chance—
and should, for example, be documented in the requirements management plan so that it is
clear to all the stakeholders which types of requirements artifacts are to be documented and
at what level of detail. A tabular description of the requirements landscape makes sense here
(see Table 1). In addition to the tabular description, it also makes sense to create an
information model in the form of an entity relationship diagram or a class diagram to describe
relationships between types of artifacts at one or different levels of detail. In the following, we
refer to this descriptive information model as the requirements information model (RIM).

In addition to the specifications made above with regard to which type of requirement is
documented, with what solution dependency, at what level of detail, and in what form, further
aspects can be added to the requirements information model:

▪ Which attributes are used for which types of artifacts? (See Chapter 3)

▪ Which views are supported? (See Chapter 3)

▪ Which evaluation criteria are planned for requirements? (See Chapter 4)

▪ Which roles are responsible for maintenance and change? (See Chapter 5)

▪ Which traceability relationships between requirements artifacts and upstream and
downstream artifacts are documented? (See Chapter 6)

▪ How are variants of requirements documented? (See Chapter 7)

With this information, the requirements information model makes up a significant part of the
requirements management plan (RMP). Therefore, the requirements information model must
be accessible for all stakeholders to view at any time.

Requirements Information Model 29

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 29/ 239

Figure 2 shows the requirements information model of Peter Reber. Based on
Table 1, Peter has divided his requirements information model into three
levels of detail (business level, user level, system level). From the 27 types of
requirements artifacts theoretically possible, Peter has selected 13 to specify
the requirements for the new bank system.

Goals at the business level (level of detail 1) are differentiated into business
goals, business rules, service quality, and business processes.

Here, business goals usually describe constraints that have to be taken into
account in the implementation—for example, the planned start date,
company guidelines, etc.

Business processes can be assigned to the category of scenarios and mainly
describe functional requirements. Peter uses BPMN to describe the business
processes.

Business rules describe, at a high level, functional requirements that have to
be considered in the subsequent work steps and that restrict the solution
space. For Peter, business rules include, for example, limits for the amount for
online transfers per day.

Figure 2: Example of a requirements information model

At the user level, Peter wants to document usability goals, requirements for
the user interface (GUI), as well as user use cases and user requirements. User
use cases should be described with use case diagrams and templates, for
example.

User requirements and user interface requirements are described from a
solution-based view. Mock-ups, textual descriptions, or ER models should be
used here.

30 Requirements Information Model

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 30/ 239

At the IT level there are interface guidelines, system quality goals, system use
cases, interface requirements, and system quality requirements. The forms of
presentation at system level are based more strongly on IT development,
which means that here, in addition to textual requirements, model-based
notations such as activity diagrams and message sequence charts (sequence
diagrams) are used.

In the present model, only the solution dependency dimension has been
described at different levels of detail. The requirement type dimension
(constraint, quality requirement, functional requirement) is presented only
structurally on the right-hand side in this model. The corresponding form of
presentation has been completely ignored in the requirements information
model because, when more than two dimensions are presented, the model
soon becomes unclear. If a modeling tool is used, here you may be able to offer
different views of the information model to avoid overloading a model view.

A further option for including more details in a requirements information
model is to use annotations for a class in order to describe the different
dimensions of the class (see Figure 3).

Figure 3: Example requirements information model with annotation of the dimension details

As an alternative to the requirements information model, you can use a
tabular description (see Table 1) for the form of presentation or to assign the
levels of detail.

Requirements Information Model 31

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 31/ 239

To check the requirements information model, you can apply the following control questions:

▪ Check for formal completeness: Does the requirements information model clearly
show, for each class of requirements, which requirement type it contains, how
dependent this requirements class is on a solution, what level of detail the requirements
class exists at, and with which form(s) of presentation it is documented?

▪ Check for content relationships: Does the requirements information model clearly
show which levels of detail exist and how they are connected? Is it clear how
requirements at the different levels of detail are dependent on one another?

▪ Check for adequacy: Are all the selected requirements classes appropriate to document
sufficiently detailed, complete, and consistent requirements so that the subsequent
activities (e.g., development and testing) can fully complete their tasks?

2.4 Content for the Requirements Management Plan

When you create the requirements landscape, you create a significant first part of your
requirements management plan. With the requirements landscape, you define which types of
requirements artifacts you want to consider, the number of levels of detail that you want to
define requirements on, and the forms of presentation that you want to use to specify types
of requirements artifacts (see Table 1 and Figure 2). By describing the requirements
landscape (e.g., with a requirements information model), via the requirements management
plan, you can ensure that all stakeholders involved in the project have a shared understanding
of the types of requirements artifacts to be used to document requirements, as well as the
levels of detail and forms of presentation to be used when documenting requirements.

2.5 Literature for Further Reading

[BBHK2014] Braun, P.; Broy, M.; Houdek, F.; Kirchmayr, M.; Müller, M.; Penzenstadler, B.; Pohl,
K.; Weyer, T.: Guiding requirements engineering for software-intensive embedded systems in
the automotive industry. Computer Science - R&D 29(1): 21–43 (2014).

[Eber2012] C. Ebert: Systematisches Requirements Engineering. Dpunkt, 4th edition, 2012
(available in German only)

[CHQW2022] Thorsten Cziharz, Peter Hruschka, Stefan Queins, Thorsten Weyer: Handbook
Requirements Management, Education and Training for IREB Certified Professional for
Requirements Engineering, Advanced Level Requirements Management, IREB, Version 2.0.0,
July 1, 2022.

[PHAB2012] Pohl, K., Hönninger, H., Achatz, R., Broy, M. (Eds.): Model-Based Engineering of
Embedded Systems - The SPES 2020 Methodology, Springer 2012.

[Pohl2010] K. Pohl: Requirements Engineering – Fundamentals, Principles, Techniques.
Springer, 2010.

[WiBe2013] K. Wiegers and J. Beatty: Software Requirements. 3rd Edition. Microsoft Press,
2013.

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 32/ 239

3 Assigning Attributes and Views for
Requirements

In this chapter, we look at how requirements management defines requirements attributes
and which requirements attributes have to be used in projects. The chapter also looks at how
we create, use, and change attribute schemas and views.

Definition 3-1: An attribute is a characteristic property of a unit. (From the IREB Glossary

[Glin2014])

The standard ISO/IEC/IEEE 29148:2011 [ISO29148] adds the aspect of how attributes are
evaluated to the definition of an attribute: "an inherent property or characteristic of an entity
that can be distinguished quantitatively or qualitatively by human or automated means."

In connection with requirements management, attributes are therefore properties of the
requirements, for example, the processing status (attribute "Status"). As meta-information,
attributes are not usually mixed with the requirement description. Instead, they are
documented and managed separately—for example, as a separate column in a tabular list of
requirements and as a separate field in a requirements database. It is not only textual
requirements that can have attributes, but also elements of a UML model [CHQW2022].
Despite having the same name, requirements attributes are not synonymous with the
attributes of a class in a class diagram. These latter attributes are part of the content of the
requirement but they are not meta-information—that is, they are not requirements attributes
in the sense of this chapter. Requirements of all types and levels of details can have attributes,
but sometimes they do not have the same attributes. Change requests also have attributes (see
Chapter 5). Entire documents can be characterized with attributes, such as a status or a
version number.

3.1 Objectives of Assigning Attributes and Examples of the Use
of Attributes in Management Activities

As the definitions above indicate, in requirements management, attributes are used to
categorize requirements, specifically with regard to meta-information required for release
planning or management, for example. Attributes allow you to get an overview of the
requirements. For extensive projects in particular, nobody has an overview of all of the
requirements. In this situation, for each requirements-based activity to be performed in
software engineering, attributes help you to concentrate on the important information—on
the requirements defined and their relevant properties. Of course, depending on the activity,
you will be interested in different extracts from the information.

Attributes of a requirement typically answer a number of important questions, for example:
"Who was the last person to change a requirement and when did they do so?" or "Which
requirements are planned for Release 1?" or "How much effort is Release 1 likely to incur
overall?" From a practical perspective, you do not enter all of the meta-information for a
requirement in one single free-text field. Each attribute is managed in a separate field.

Requirements attributes and views 33

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 33/ 239

Value lists are often specified here, and these are standardized for all requirements. For
example, it is easier to evaluate the attribute "Priority" if it permits only the values "Low",
"Normal", and "High" or another grading or values list. If this were a free-text field, comments
such as "Quite important", or "Mr. Miller said the requirement is important" could be entered
here. This type of content does not particularly support the differentiation between the most
important and the less important requirements. This differentiation is much easier if, by
simply using filters, you can display a list of all requirements categorized as "High". Which
format and which attribute values make most sense for the priority, for example, depends,
amongst other things, on which views and decisions are to be supported by the priorities (see
Chapter 4).

The objective of assigning attributes to requirements is to enable team members and other
stakeholders to document and evaluate information on requirements in a structured manner
as part of the requirements engineering process [Pohl 2010].

You should think carefully about which attributes are required and the values permitted for
the attributes at the very beginning of a project, as it is not easy to change an attribute schema
retrospectively (see Section 3.5). Unfortunately, there is no one single attribute schema that
fits everywhere and every situation ideally. The decisive factor is always which attributes you
want to subsequently evaluate and how you want to do this.

Various authors propose different compositions of attributes which, in their experience, have
proven practical. According to the CPRE Foundation Level, the attributes in Table 2 and Table
3 are some of the important requirements attributes [PoRu2011].

Attribute
Type

Meaning

Identifier
Short, unique identification of a requirements artifact in the set of
requirements under consideration

Name Unique, characteristic name

Description Describes the content of the requirement in compact form

Version Current version of the requirement

Author Designates the author of the requirement

Source Designates the source or sources of the requirement

Justification Describes why this requirement is important for the planned system

Stability
Designates the probable stability of the requirement here, stability is the
scope of changes expected for this requirement in the future; possible
differentiation: "Stable", "Volatile"

Criticality
In the sense of an estimation of the level of damage and probability of
occurrence

Priority

Designates the priority of the requirement with regard to the selected
features for prioritization—for example, "Importance for acceptance on the
market", "Order of implementation", "Damage or opportunity costs of non-
realization"

Table 2: Frequently used attribute types [PoRu2011].

34 Requirement Attributes and Views

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 34/ 239

Attribute
Type

Meaning

Owner Designates the person, stakehold-er group, or organization(al unit)
responsible for the content of this requirement

Requirement type Designates the type of requirement (e.g., functional requirement, quality
requirement, or constraint) dependent on the differentiation schema used

Status of the
content

Designates the current status of the content of the requirement—for
example, "Idea", "Concept", "Detailed content"

Status of
verification

Designates the current status of the validation—for example, "Unchecked",
"In evaluation", "Checked", "Failed", "To be corrected"

Status of
agreement

Designates the current status of the agreement—for example, "Not agreed",
"Agreed", "Conflicts"

Effort Forecast/actual implementation effort for this requirement

Release Name and/or number of the release in which the requirement is to be
implemented

Legal liability Indicates the degree of legal liability of the requirement—for example,
"Must", "Recommended", and "Optional"

Cross-references Designates the relationships to other requirements: for example, if you know
that the prerequisite for realizing this requirement is the prior realization of
another requirement (see Chapter 1)

General
information

In this attribute, you can document any information considered relevant for
this requirement; for example, if agreement to this requirement is planned
for the next meeting with the client

Table 3: Frequently used attribute types [PoRu2011].

The list above contains all of the attributes named in the standard ISO/IEC/IEEE 29148:2011
[ISO29148], as well as further attributes.

To document traceability, in addition to documenting the source, it would be useful to
document in a further attribute the technical component in which a requirement is
implemented (attribute "Technical component") and the test cases used to test the
requirement (attribute "Test cases") (see Chapter 1).

[Pohl2010] recommends a further attribute schema with seven attribute categories. This
schema differentiates between the following categories: identification, context relationships,
documentation aspects, content aspects, agreement aspects, validation aspects, and
management aspects. Each of the categories mentioned contains a number of possible
attributes.

▪ Identification: these are the attributes that allow an attribute to be identified. They
include the ID and the name, which should describe the content of the requirement as
meaningfully as possible.

▪ Context relationships: these attributes document the relationships between the
requirements and the context—for example, the source, the justification, the person
responsible, and any stakeholders affected and with whom changes to the requirement
must be agreed.

Requirements attributes and views 35

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 35/ 239

▪ Documentation aspects: here you define the form of presentation for specifying a
requirement (free text, UML model, text template, etc.), a link to a document that
contains the specification rules, and the validation status of the requirement
(documentation) (e.g., unchecked/in evaluation/partially checked/checked/to be
corrected/released).

▪ Content aspects: these attributes document and classify the content of the requirement.
In particular, this includes the description of the requirement, but also the type of
requirement, comments from the person who created the requirement, the status of the
content (idea/rough content/detailed content) and cross-references to other
development artifacts (traceability relationships).

▪ Agreement aspects: these attributes document the agreement amongst the
stakeholders—for example, an agreement status (not known/conflicts/in
agreement/agreed), a validation status for the agreement (unchecked/in
evaluation/partially checked/checked/to be corrected/released), and one free-text
field each for recognized conflicts and decisions.

▪ Validation aspects: the validation checks the quality of a requirement with regard to the
three dimensions of content, documentation, and agreement. Here you can document
the following: compliance with initial criteria for validation (i.e.: can validation start?),
techniques for validation, the current validation step, and the overall status of validation
(unchecked/in evaluation/partially checked/checked/to be corrected/released).

▪ Management aspects: these attributes document the status of a requirement and other
management information. This information includes stability, criticality and priority,
legal liability, and further status information. It also includes the author of the
requirement, the version, change history, system release, and expected and actual effort.

Practical tip: To avoid subsequent changes as far as possible, think precisely at an early stage about

which attributes your attribute schema should contain. Add only those attributes to the attribute

schema that fulfill two criteria: (1) You are sure that the person responsible will maintain this

attribute during the course of their work; (2) It is clear who benefits from this attribute by

evaluating it, when they benefit, and how they benefit. For the effort involved in documenting this

meta-information to be worthwhile, both criteria must be fulfilled.

3.2 What Is an Attribute Schema?

Definition 3-2: "The set of all defined attributes for a class of requirements (e.g., functional

requirements, quality requirements) is called an attribute schema." ([PoRu2011], Section 8.1.2)

An attribute schema describes the relevant requirements attributes for a project and/or a
company [RuSo2009]. In addition to the name and definition of the attribute, the attribute
schema also includes the format of the attributes (Text or number? How many characters are
permitted for the attribute?) and the specification of the permitted values or value ranges.

36 Requirement Attributes and Views

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 36/ 239

In requirements management, providing an attribute schema (template-based) for
requirements brings the following advantages [Pohl2010]:

▪ Accurate and consistent definition of the required information: A predefined schema
defines which information or attributes for requirements must be entered and which
values are allowed for this information.

▪ Gap detection: It is possible to detect gaps in the elaboration of requirements if certain
attributes are empty.

▪ Support for employee training: Employees who have already worked with the same, or
similar, attribute schemas in a previous project, for example, can quickly find the
necessary information and where particular information on the requirement should be
documented.

▪ Finding the same information in the same place: As all requirements within a project are
documented on the basis of the same attribute schema, there is a clear specification of
where which information—such as the author—can be found for a requirement.

The attribute schema is part of the requirements management plan, but not the requirements
landscape. Sometimes company standards have to be observed, or the use of an official
standard or industry standard is stipulated. These standards usually specify the attributes to
be used and their values. This standardized attribute schema then allows cross-project
comparable evaluations via requirements management (see Chapter 8).

In addition to the requirements manager, other roles in the development process and in the
company use the meta-information about requirements that is contained in the requirements
attributes. The project manager, for example, is regularly interested in the processing status
of requirements. Therefore, when defining an attribute schema, the information needs of
other stakeholders in the requirements engineering process must also be taken into account.
We will look at the different roles and the information they need again later on in connection
with views (see Section 3.6). Ultimately, the views required are the basis for defining the
attribute schema.

3.3 The Benefits of an Attribute Schema

Attributes support a number of requirements management tasks as well as other
management tasks:

▪ Views: Attributes are the basis for the definition and implementation of views in a tool
(see Section 3.6).

▪ Prioritization: The respective priority of a requirement is documented in one or more
corresponding attributes. Multiple attributes can be defined for different prioritization
criteria. In turn, these priorities support decisions that are based on the priorities—for
example, the release planning. Usually, you want to implement the most important
requirements first. In turn, this importance can be dependent on multiple attributes—
for example, when benefits and costs are weighed up against one another. You can find
more information about prioritization in Chapter 4.

▪ Project management: The project manager is interested in the forecast (or actual)
realization effort involved with each requirement. This is recorded in a corresponding
attribute.

Requirements attributes and views 37

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 37/ 239

This attribute allows you to create totals, and you can therefore use it to determine the
total effort for a group of requirements (for example, all important requirements or the
requirements for one release). It also supports project monitoring during the course of
the project. Project management reports that contain only the pure number of
requirements with a specific status do not give a true picture of the status of the project
because not every requirement is of the same size. However, if, in these reports, you
weight the requirements according to their realization effort, you get a very good picture
of the status of the entire project. This is particularly true if the status attribute of the
requirements covers the entire lifecycle—that is, not just whether a requirement has
been accepted and handed over to development, but also whether the requirement has
been realized, whether the implementation has already been tested, whether the
requirement has been released by quality assurance and deemed free of errors, whether
the customer has accepted the associated functionality, and whether the requirement
has been delivered.

▪ Release management: The priorities support the release definition and release
management—that is, the management of the different software statuses delivered to
customers. Release management is supported by a corresponding "Release" attribute.
This attribute documents which requirements are implemented in which release. In
many cases, a distinction will be made between the desired and the planned release in
order to reflect the difference that often occurs between these two realities (see Chapter
5).

▪ Risk management: The attributes "Criticality", "Stability", and "Legal liability" support
the identification and evaluation of risks associated with a requirement. In turn, this risk
evaluation is relevant for the project manager and the release planning. The decisive
factors for the definition of attributes to support risk management are the criteria used
in risk management and the evaluations required.

▪ Traceability: Being able to trace requirements is important if, during change
management, you want to be able to foresee the effects of changes to requirements or
resolve conflicts between contradictory requirements. Traceability should be achieved
in both directions: to the source of a requirement and to later artifacts such as technical
components and test cases. However, dependencies between requirements of the same
type and refinement relationships between requirements at different levels of detail
should also be documented, provided the benefits of doing so justifies the effort
involved. For more information about the traceability of requirements, see Chapter 6.

▪ Variant management: As part of variant management (see Chapter 7), attributes can be
used to assign requirements to specific variants and product configurations.

▪ Reporting: Attributes form the basis for reports, such as an evaluation of the respective
number of requirements with a specific status (e.g., "Released" or "Tested"). You can find
more information about requirements management reports in Chapter 8.

3.4 Designing an Attribute Schema

The attribute schema is part of the requirements management plan. It should be defined
before the documentation of requirements begins and should be agreed with all stakeholders
of the requirements engineering process. Subsequent enhancements and changes are usually
only possible with great effort.

38 Requirement Attributes and Views

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 38/ 239

To design an attribute schema for use in a specific project, we recommend the following steps,
which are discussed in more detail in the subsequent sections:

1. Identify sources of attributes

2. Select the attributes

3. Define permitted attribute values and properties of attributes

4. Define dependencies between attributes and their values

5. Provide support for recording data

6. Document the attribute schema

3.4.1 Identifying Sources of Attributes

To select attributes, you have to first identify the relevant sources for attributes. Sources that
can be used to select attributes include:

▪ An attribute schema from a similar project (for example, similar in scope, number of
employees involved, etc.)

▪ A reference schema of the organization or another standard, as described in Section 3.1

▪ Organizational rules that determine, for example, which attributes must be used in all
attribute schemas in all projects

▪ Stakeholders of the requirements engineering process

You can adopt schemas from standards or adapt them as required.

If, in a (generally larger) company, attribute schemas are defined in many different projects
(e.g., through reuse and subsequent adaptation), it makes sense to define general rules for
creating an attribute schema. In doing so, you can define, for example, that selecting the
attribute "Stability" for an attribute schema also requires the selection of the attribute "Risk",
and therefore both attributes must be present in the attribute schema for the respective
project. This makes sense if, when assessing the stability of a requirement, the company also
wants to evaluate in parallel how highly the risk of the requirement should be evaluated in
terms of, for example, scheduling.

Furthermore, when selecting attributes for an attribute schema, a company can first define
generally which attributes must always be considered in every project—for example, to
enable cross-project evaluations. These attributes are then present in every project and
should be declared as mandatory fields.

Another source of attributes for an attribute schema are the stakeholders of the requirements
engineering process (see also Section 3.6). The stakeholders are identified first and then their
needs.

Requirements attributes and views 39

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 39/ 239

Peter Reber decides to use the IREB attribute schema for his first draft (see
Table 2 and Table 3).

The stakeholders of the requirements engineering process are the project
managers, the business analysts, the IT security experts, the usability expert,
and the Customer Advisory Board, but also legal risk management
requirements such as BASEL II.

When a reference system is adopted, it is easy for unnecessary attributes to
be adopted as well. Therefore, Peter Reber first asks each stakeholder
individually for their needs. If an attribute contained in the reference schema
is not specified, Peter will check whether anyone really needs it. It may be the
case that the stakeholders have simply forgotten to mention it.

In the first step, the stakeholders name the following attributes:

▪ Project manager: status of and effort involved in the requirements, the
release that a requirement is planned for, and the status of the artifacts,
but above all, an overview (weighted by effort) of the proportion of
requirements (of a release) with each specific status

▪ Business analyst: a priority value that measures the benefit of a
requirement for the bank

▪ IT security expert: criticality

▪ Usability expert and Customer Advisory Board: priority in the sense of
"benefits for the user/customers of the bank"

▪ BASEL II: "Author" and "Version" allow you to trace who changed what and
when, "Justification" documents the reason; the attributes "Stability" and
"Legal liability" are used for risk management

3.4.2 Selecting Attributes

The attributes must be selected specifically and appropriately for the project so that they are
actually of benefit. This applies regardless of whether you are using a reference schema or
defining a new attribute schema.

If you use a reference schema as a basis, for every single attribute, check whether you need it
and if so, what for. The attribute is then adopted, adapted, or (on a project-specific basis)
removed. You can also add new attributes. If you do not use a reference schema, you have to
create a new attribute schema. To do this, you have to identify corresponding attributes—for
example, by asking the relevant stakeholders (see step 1).

The ID (identification) of a requirement is particularly important when you are assigning
attributes to requirements. It is used to identify each requirement uniquely and it is a
mandatory attribute in every attribute schema. Within the company, you have to define the
context in which the requirement is unique. The context can be based on the organizational
structure and can define, for example, that the requirement has to be unique only within
departments. Another option for delimitation can lie in technical constraints—for example,
the requirement has to be unique only in the database used.

40 Requirement Attributes and Views

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 40/ 239

In this case, you have to define the procedure for handling requirement IDs that are exchanged
between these databases, as this type of exchange can lead to ambiguous IDs (because they
appear more than once).

To select attributes for an attribute schema and to evaluate whether a schema is complete,
you can use the seven categories presented in [Pohl2010] as a checklist: identification, context
relationships, documentation aspects, content aspects, agreement aspects, validation aspects,
and management aspects (see Section 3.1). All seven categories should be covered in an
attribute schema.

To define an attribute schema using the categories specified, we recommend you perform the
following activities:

▪ For each category, check which of the proposed attributes has already been selected for
the project (e.g., via the selection of a reference schema). Note that sometimes, the same
attribute has different names in different schemas, or the same designation is used to
describe different content. For example, the "Source" attribute in the "Context
relationships" category can be reflected with an attribute "Basis" in a reference schema.
To ensure that this match can be discovered, the semantics of the respective attribute
must be documented and traceable.

▪ Systematic consideration of the individual categories and the attributes proposed there.
In this activity, for each attribute proposed, the benefits of the attribute for the current
project must be evaluated and checked. Only those attributes where the stakeholder
who will use it is clear, and for what purpose, should be used.

▪ Expansion of the categories or the reference schema. When a new attribute is identified
during the analysis for the selection of attributes, and this new attribute does not exist
yet in the reference schema or in one of the categories, analyze whether it makes sense
to expand a category or the reference schema. In this activity, you have to weigh up
whether a new attribute should be added to the reference schema or a category to be
used as a proposal for the definition of an attribute schema in subsequent projects. You
have to estimate how likely it is that a new attribute will be used in most of the
subsequent projects. If it will be used frequently, it makes sense to expand the reference
schema. If it is unlikely that the new attribute will be used very often, it should be
documented in one of the categories.

In processes for defining an attribute schema, it is often the case that a lot of attributes are
defined initially because, for example, different stakeholders want to record and evaluate
information for a requirement from different perspectives. In practice, the result is often that
attributes are not filled and are not used for good reason. In this case, the attribute schema
has to be adapted, which is not always easy (see Section 3.5).

To avoid this type of subsequent adjustment as far as possible, the attributes should be limited
to a practical quantity that can be used. Therefore, only attributes that support a clear goal or
a specific task should be used. An example of such an objective can be that the project manager
wants to perform an earned value analysis.

Requirements attributes and views 41

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 41/ 239

To do this, the manager has to know, for example, the degree of completion of the project, and
thus requires a calculation, weighted by effort, of the proportion of the requirements that has
already been completed. Each requirement therefore needs two attributes: one "Effort"
attribute and one status attribute that receives the value "Completed" as soon as the work on
the requirement has been completed. For a more differentiated calculation of the degree of
completion, partial degrees of completion can also be considered for earlier status values (e.g.,
a degree of completion of 80% if the requirement has been implemented but has not yet been
tested). Of course, the formula for the degree of completion can use only status values that the
attribute will actually receive. This may sound obvious, but when the attribute schema is
changed, the consistency between the attribute schema and views/reports can easily be lost,
even while the schema is in the process of being defined.

During the discussion with the stakeholders, it is established that they think it
is unnecessarily complicated to use three different status attributes. The
decision is therefore taken to use only one single attribute "Status". This
attribute can adopt the following values to reflect the lifecycle of a
requirement or a change: in progress, in evaluation, released, changed,
rejected, deleted, implemented, tested, completed.

The stakeholders have not specified the following attributes (see Table 2 and
Table 3): identifier, name, description, source, owner, requirement type,
cross-references, general information. These attributes are important for the
requirements manager. The different dimensions of the requirements
landscape from Chapter 2 must also be taken into account, and only the
requirement type is already included in the schema.

Therefore, the first draft of the attribute schema corresponds to that of the
IREB, with the following differences: there is only one status attribute instead
of three, and there are two different priority values that each measure the
benefit for the different stakeholders: from the view of the bank and the view
of the bank customers. The following requirement attributes are added to the
requirement type: solution independence, form of presentation, and level of
detail.

Practical tip: Less is more. If you are in any doubt, leave an attribute out initially. It is better to add

a new attribute later and maintain the content than for an attribute not to be filled at all, or to be

filled with nonsense or reluctantly and then possibly never used. That frustrates employees and

raises doubts about the sense of other attributes.

3.4.3 Defining Permitted Attribute Values and Properties of Attributes

The attribute schema also defines the permitted values for the attributes. For example, for the
attribute "Risk" or "Criticality", you can define that only the following values are permitted to
quantify the risk: high, medium, low, or none. This makes sense because, firstly, it is not really
possible to determine risks more precisely in advance, and secondly, this value is used only to
differentiate the particularly critical risks from the less critical risks. In a risk management
view, the risks can then be presented by category and different measures defined for each
category: from "Bears a risk", through "Take measures", down to "Cancel project". The values
must be clearly defined. For example: When is the risk of a requirement deemed to be "High"?
What basis is used to measure this? The probability of a problem, the possible damage, or the
product of both? How high does the risk have to be to be deemed "High"?

42 Requirement Attributes and Views

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 42/ 239

For example, the value "High" could be assigned only if an interruption to operations is feared.
These definitions must be communicated to all parties that maintain or evaluate this status
and should also be defined in the help text in the requirements management tool.

Furthermore, the attribute schema must also specify for the selected attributes whether (in
each case) they are mandatory or optional attributes. Both have their advantages and
disadvantages. If important attributes are not filled, reports based on these attributes will not
be complete. If, for example, the risk is not entered for a critical requirement (e.g., because it
is not yet clear whether the risk is "High" or even "Catastrophic"), because this field is empty,
risk management will miss this requirement. In the worst case, this could mean that a risk that
puts the entire project into question is missed. With online banking, for example, it may be
better tactically to not introduce risky functions until the risks caused by these functions are
securely under control. If the attribute "Risk" is a mandatory attribute, the person creating the
requirement would have entered at least "High" and would have noted in a comment field that
this requirement should be checked again and potentially given a higher value. However, the
requirement would have already been detected during risk management in the category of
critical requirements. On the other hand, mandatory fields can force people creating
requirements to make statements too early, with these statements not being checked or
corrected at a later stage. It is sometimes not possible to make evaluations at the point in time
when a requirement is created. As long as an attribute remains empty, a corresponding view
can show that this requirement needs to be edited and the expert team for security will take
care of the requirement that has not been classified yet.

Another property that has to be defined is whether several values or only one value can be
selected in the field for each requirement.

Instead of forcing the selection of a single value, you can also offer the following selection for
the attribute value: "All possible values are valid" or "No value is valid". In the case of "No
value is valid", you must make sure that this value is differentiated semantically from the
attribute not being filled (i.e., it is not equated with the attribute not being filled), because
selecting the value "No value is valid" is an intentional statement, whereas not filling the
attribute allows two interpretations: either the predefined selection options do not apply, or
the attribute has not been processed.

Requirements attributes and views 43

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 43/ 239

The table below shows the attribute schema for our example bank. Mandatory
fields are marked with an asterisk:

Attribute Meaning Values

Identifier* Short, unique identification The bank's schema is: project
code + sequential number, so
in this case, OBA0001,
OBA0002, etc.

Name* Unique, characteristic name Free text

Description* Describes the content of the
requirement in compact
form

Free text

Version* Current version of the
requirement

The format of the versioning
is still to be defined

Author* Author of the requirement Only the following persons
are allowed to write
requirements:

Peter Reber,

Martin Geldmann (business
analyst),

Anja Streng (IT security
expert),

Kirsten Uba (usability expert)

Source* Designates the source or
sources of the requirement

List of all stakeholders

Justification Describes why this
requirement is important
for the planned system

Free text

Stability Designates the probable
stability of the requirement

"Stable", "Volatile"

Criticality In the sense of an
estimation of the level of
damage multiplied by the
probability of occurrence
(risk)

"Low", "Medium", "High"

Priority for bank Measures the benefit of the
requirements for the bank

"Low", "Medium", "High"

Priority for
customers

Measures the benefit of the
requirements for the bank
customers

"Low", "Medium", "High"

Owner Designates the person,
stakehold-er group, or
organization(al unit)
responsible for the content
of this requirement

List of all stakeholders

44 Requirement Attributes and Views

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 44/ 239

Attribute Meaning Values

Requirement type Type of requirement "Functional requirement",
"Quality requirement",
"Constraint"

Solution
dependency

Solution dependency "Goal", "Scenario", "Solution-
oriented requirement"

Level of detail Level of detail Level 1: Business scope

Level 2: User scope

Level 3: IT scope

Status* Status in the lifecycle of the
requirement

In progress, in evaluation,
released, changed, rejected,
deleted, implemented, tested,
completed

Effort Forecast implementation
effort for this requirement
in days; for requirements
with the status
"Completed", the actual
value is entered here

Only whole or half values

Release Number of the release in
which the requirement is to
be implemented

Takes the form year/quarter,
e.g., 2014/3

Legal liability Indicates the degree of legal
liability of the requirement

"Optional", "Recommended",
"Must"

3.4.4 Defining Dependencies between Attributes and Their Values

Attributes can be interdependent with regard to their values. When defining an attribute
schema, you can define, for example, that certain combinations of two attributes with
predefined attribute values are not allowed. For example, you can prevent a requirement with
the value "Volatile" in the "Stability" attribute simultaneously receiving the value "Released"
in the "Status" attribute. This ensures, for example, that only requirements that are considered
stable are approved for development.

However, it may also make sense to combine these two attributes in one attribute and offer
only the permitted combinations there. This is a solution particularly if the tool used does not
support the consideration of dependencies between attribute values.

In variant management, assigning requirements to specific variants can be prohibited. It is
also feasible to not allow certain combinations of variants.

You can also define that any transitions from one attribute value to another are not permitted.
In particular, the transitions from one status to another should observe the defined lifecycle
of the requirement (see Chapter 5).

Dependencies between attributes and their values can also arise through the hierarchization
of requirements. For example, if requirement A is detailed by requirements A.1 and A.2, for
the attributes of the attribute schema, you must define whether or not the value of A in an
attribute depends on the values of A.1 and A.2.

Requirements attributes and views 45

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 45/ 239

For an attribute "Status", for example, it makes sense to define that the requirement can only
receive the value "Released" if requirements A.1 and A.2 also have the value "Released" (and
not if A.2, for instance, still has the value "In progress"). It would also not be explicable for
requirement A to have a lower priority than A.1 or A.2.

Together with the stakeholders, Peter Reber decides that they do not want to
define any limitations, except for those specified in the requirements
landscape (see Chapter 2), and that not every transition between requirement
statuses is permitted. The requirements information model specifies that
business goals and business processes belong to detail level 1. Business goals
are described in text form, with use case templates used for business
processes. This results in limitations for the permissible combinations of
attributes.

To ensure that the status transitions follow the predefined lifecycle of the
requirements, and that it is not possible to accidentally skip steps (e.g.,
approvals), only the transitions shown in Figure 11 are permitted.

3.4.5 Providing Support for Recording Data

There is always one person responsible for each attribute, and specifically, for recording the
attribute and regularly checking that the attribute is complete and plausible. By default, this
is the requirements manager, but the manager can delegate responsibility for individual
attributes to other persons involved in the project.

For the attribute owner, recording the attributes as well as the requirement is an additional
effort. Clicking a value in a dropdown list is quick and easy but collecting the requirement
information from the different stakeholders and clarifying contradictory statements is time-
consuming and tedious. In many cases, therefore, technical support from a tool for recording
and managing attributes is very important.

It is helpful, for example, to define standard ("default") values for attributes which are then
set automatically when new requirements are created. The default value can be the most
frequent value or the least meaningful value, or the value that all new requirements created
have—for example, stability "Volatile". Note, however, that it may not be desirable for
requirements classified as "Medium" not to differ from new requirements created that have
not yet been classified. Default values are particularly useful for mandatory fields that must
always be filled when a requirement is created.

You can also group two attributes into a useful "combined" attribute if only a few combination
options are permitted for the respective attribute values. What is also helpful is common input
functions, such as selecting or deselecting an entire values list with one function to select them
for a requirement, for example (provided multiple values are permitted in the attribute), or
vice versa: the selection of a list of requirements and setting an attribute in all of them.

Other help that can be provided by a tool is the automatic insertion of dependent attribute
values of different attributes (where applicable, with a query). For example, a tool can
automatically assign the status "In progress" to a requirement that already had the status
"Released" but has subsequently been changed (where applicable, with a note). Help can also
be realized, for example, when for hierarchically dependent requirements, values that are set
in the parent node are automatically transferred to the "child nodes".

Some values should be set automatically in any situation as incontestable evidence—for
example, the author (= user name of the author) and date of a change.

46 Requirement Attributes and Views

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 46/ 239

Default values for the attributes are now added to our attribute schema where
this makes sense:

Attribute Values Default Value

Identifier The bank's schema is: project code
+ sequential number, so in this case,
OBA0001, OBA0002, etc.

Incremented
automatically

Name Free text

Description Free text

Version The format of the versioning is still to
be defined

1

Author Only the following persons are
allowed to write requirements:

Peter Reber,

Martin Geldmann (business analyst),

Anja Streng (IT security expert),

Kirsten Uba (usability expert)

User name of the
author

Source List of all stakeholders

Justification Free text

Stability "Stable", "Volatile" "Volatile"

Criticality "Low", "Medium", "High"

Priority for bank "Low", "Medium", "High"

Priority for customers "Low", "Medium", "High"

Owner List of all stakeholders Peter Reber

Requirement type "Functional requirement", "Quality
requirement", "Constraint"

"Functional
requirement"

Solution dependency "Goal", "Scenario", "Solution-
oriented requirement"

Attribute Values Default Value

Level of detail Level 1: Business scope

Level 2: User scope

Level 3: IT scope

Status In progress, in evaluation, released,
changed, rejected, deleted,
implemented, tested, completed

"In progress"

Effort Only whole or half values (in person
days)

Release Takes the form year/quarter, e.g.,
2014/3

Legal liability "Optional", "Recommended", "Must"

Cross-references "Being tested by", "Refined", "In
conflict with", "Replaces"

General information Free text

Requirements attributes and views 47

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 47/ 239

3.4.6 Documenting the Attribute Schema

Attribute schemas are presented in a tabular form or in an information model, depending on
the degree of complexity (for example, with regard to the number of attributes, dependencies
between attributes or their values) (similar to the presentation in Section 2.3). A
requirements management tool then maps the corresponding attribute schema by providing
the corresponding fields.

3.5 Change Management for Attribute Schemas

Retrospective changes to an attribute schema during the course of the project should be
avoided if possible [RuSo2009]. The important things to note for a retrospective change to an
attribute schema depend on the type of change.

3.5.1 Adding, Changing, or Deleting an Attribute

When a new attribute is added, the previously documented requirements should be updated
to take account of the new attribute. This can be time-consuming. If you change the name,
designations in different documents, views, and reports may no longer be consistent with one
another. If an attribute is to be deleted, this often causes difficulties if a view, a report, or an
interface to another system queries this attribute. Instead of deleting it, you can add "(no
longer used)" to its name.

3.5.2 Adding, Changing, or Deleting Possible Attribute Values (Value
Range)

Adding attribute values for an existing attribute is usually no problem for the underlying tool.
From a technical point of view, you must check whether the requirements for which this
attribute was already set have to be analyzed again and whether, if applicable, the new
attribute value is better.

For example, if a new attribute value "Very high" were to be added for the criticality, all
requirements with the previous criticality "High" must be checked again to establish whether
the criticality is actually "Very high".

When deleting attribute values from a value range, it is important to ensure that requirements
do not become inconsistent due to empty entries in the attribute. Problems are mainly caused
by mandatory fields, since the requirement must have a valid value in the attribute under
consideration. In this case, the solution may be to enter the default value in the field. For
attributes with dependent attribute values, you must make sure that the removal of an
attribute value does not result in impermissible attribute combinations.

When attribute values are changed, it is important to ensure that the changes are made in all
requirements that contain the original value. In the particular case of requirements being
exchanged between different systems, inconsistencies can occur if, for example, the change of
a requirement value is not executed in a database (because it is not desired). In general, when
adding, changing, or deleting requirement values, you have to decide whether this change will
affect requirements that have already been entered or only applies to future requirements.

48 Requirement Attributes and Views

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 48/ 239

3.5.3 Adding or Deleting Relationships between Attributes

If you add a relationship or dependency between attributes, this can lead to some attribute
combinations for the requirements already recorded suddenly no longer being allowed. For
example, if you add the limitation that selecting a value for the attribute "Stability" must now
always lead to the attribute "Risk" being populated (and this attribute is therefore always
populated when "Stability" is populated), you must then check which requirements have a
value for "Stability" but none for "Risk" and must therefore be updated.

Deleting a relationship between attributes is generally not critical. More is now permitted
than before. You may be able to check whether, in some cases, the previously prohibited
attribute combination would now make sense.

3.5.4 Changing Default Values for the Attribute Type

Changing default values should initially affect only the entry of new requirements. In this
context, however, requirements that have been assigned the previous default value should be
analyzed to check whether they still have the correct value, or whether they need to be
adjusted.

3.5.5 Changing the Binding Character of Attributes ("Mandatory
Fields" and "Optional Fields")

Changing a mandatory field to an optional field usually does not result in any subsequent
effort. In contrast, if a change from an optional attribute to a mandatory attribute is planned,
you must make sure that the attribute is populated with an appropriate value for all
requirements that have already been documented. It may be necessary to assign custom
values rather than use a default value.

Generally, when making changes to attribute schemas, you have to analyze the extent to which
the views, reports, and interfaces to other tools are affected. For example, if scripts have been
created in the tool that check or process a particular attribute, a change to this attribute can
result in the corresponding scripts no longer being executable.

3.6 Goals and Types of Views

Projects often cover hundreds or even thousands of requirements. The people involved in the
project no longer have an overview of this volume of requirements. Therefore, we need
concepts to reduce this complexity. The view concept is very important here. A view is a
reduced presentation of the requirements—for example, reduced to just some of the
requirements or just some of the information (including the attributes). The basis for this is
the filtering and sorting of requirements.

Definition 3-4: A view is a goal-oriented abstraction of the requirements that covers only those

requirements and associated information that are relevant for the respective purpose (e.g.,

stakeholders, decision requirement). From a technical perspective, however, a view is a predefined

reusable combination of filter and sorting settings as well as abstractions and aggregations.

Requirements attributes and views 49

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 49/ 239

The IREB Foundation Level differentiates between two basic types of views [IREB2015]:

▪ Selective views: presentation of a subset of the requirements that have a specific
attribute value—for example, all requirements with the status "In progress".

▪ Condensed views: presentation of summarized information for the selected
requirements—that is, information that is not present in the original requirements list
but is calculated, such as the number of all requirements with criticality "High" and
status "In progress".

There are also projective views: in projective views, those attributes that are not relevant for
the view under consideration are hidden so that only the information about a requirement
that is relevant for a view is displayed.

In a requirements engineering tool, you can define and then save a view. Due to regular use of
exactly the same view, over the course of the project, reports are created that are comparable
with one another and that document the course of the project.

The attribute schema is the basis for the definition of a view, as every view is based on the
information defined in an attribute schema. Therefore, when you create an attribute schema,
you must also consider the views that are to be created later.

Stakeholders of a project often need specific information to perform their tasks. Different
roles need different information and therefore different views of the requirements:

▪ The stakeholders, in particular those who define the requirements, want to know where
a requirement comes from (the source, e.g., stakeholder or document) and what goal the
requirement supports. They want this information so that they can ensure that all
requirements are actually necessary (= backward traceability or pre-requirements
specification traceability). The stakeholders are also interested in forwards traceability
(= post-requirements specification traceability)—that is, the traceability of
requirements to subsequent development artifacts such as the system architecture,
implementation, and test [IREB2015]. For example, what test can the stakeholder use at
acceptance to check whether a specific requirement has been implemented correctly?

▪ Requirements engineers and requirements managers want to make sure of the quality of
the requirements, particularly the consistency of the requirements between documents
and detail levels. Traceability is also important for this, as is an overview of the status of
the traceability.

▪ Project managers are interested in the status of the project (or a release), so that they
can forecast the residual effort and residual duration for requirements engineering or
the project. They could perform requirements-based project management—for
example, use the status of the requirements to evaluate the degree of completion of the
project. This is common in agile development but is generally always possible if the
quality of the content of the attributes is correct—that is, the probable implementation
effort for each requirement is defined here, the processing status is clear from the status,
and corresponding evaluations are available in the tool. When requests are made for
changes to requirements, the project manager wants to be able to predict the probable
effects, such as the effort, side effects, and new risks. Traceability is very important for
such evaluations. The project manager also wants to know who the contact person is for
a specific requirement. That is a reason for the attributes "Source", "Owner", and/or
"Next processor".

50 Requirement Attributes and Views

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 50/ 239

▪ The main thing that the architect needs is a structured view of the requirements—for
example, the grouping of the requirements according to technical criteria for the
assignment of components. For this purpose, attribute types such as "Interface
requirement" are useful.

▪ Developers want access to the original requirements that belong to the next component
they are implementing. This is supported by traceability between requirements and
components.

▪ Testers and test management want to know which and how many requirements still need
to be tested, and how many they have already confirmed as being free of errors. This
allows them to measure the progress of testing and to estimate the residual effort for
testing. It is also important to know which test cases have to be executed again in the
event of a change.

The above-mentioned views can be created relatively easily by filtering and sorting the
requirements according to their attribute values and through evaluations such as the creation
of totals across attributes. However, the absolutely essential prerequisite for this is that the
corresponding attribute values are present and well maintained, and that the requirements
engineering tool allows the required evaluations.

In addition to providing a clear focus and presentation of the information available for the
different roles, views can also regulate access to requirements on a role-specific basis. It is
often the case that you do not want every person involved in the project to have access to all
information, and you therefore need to be able to generate role-based views (see [Pohl2010]).
This type of authorization concept can be realized so specifically in a tool that specific roles
can only see specific views.

3.7 Defining Views and the Risks of Views

The process for defining views includes the following steps:

▪ Stakeholder identification: definition of the stakeholders who need one or more views.

▪ Reuse: views from other projects or from a reference project can also be used as a
template for the views to be defined.

▪ Specification of goals: for each stakeholder, you need to know the goal of their views.
This determines which information should be filtered out or summarized, or which
sorting should be set initially. In this context, you must also define the rights of roles and
views, that is, which role should be able to activate which view. It is efficient if one view
can be used by multiple roles.

▪ Specification of required attributes and comparison with the attribute schema: to be able
to fulfill the goals of a view, you must ensure that it is possible to collect the necessary
information and that the corresponding attributes are also available. An evaluation of
the number of requirements that are still in a volatile status can only be generated if this
status is also documented in a corresponding attribute. The comparison with the
attribute schema often leads to the discovery of new views because when they look at
the attribute schema, the stakeholders realize which evaluations would still be possible.
The definition of views and attribute schemas therefore influence each other.

▪ Implementation of the view: finally, the predefined views must be implemented and
tested in the underlying tool.

Requirements attributes and views 51

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 51/ 239

Sometimes, users of a requirements management system are not aware that the complex
information about a requirement can be restricted by views as required. They then often work
with a global and all-encompassing view and perceive the tool unjustifiably as too extensive
and possibly obstructive in their work. At the same time, views also bear risks. For example, in
a view, too much context could be lost: if you create a view in which atomic requirements are
given in a list without any context (e.g., use cases), for example, this overview will only be
meaningful to a limited extent. To avoid such ineffective views as far as possible, when you
define a view you must always take the underlying goals of the stakeholders into account.

3.8 Implementing a View

Most views are implemented in a requirements management tool by selecting/filtering and
sorting by attribute values (see also [Pohl2010]).

When selecting requirements, you can use a predefined filter to hide requirements—or
attributes of the requirements or both—that you are not interested in for the current
situation. This means that the view presents only an extract of the available data. For example,
by using a filter on a specific release, a tester can select the requirements that are relevant for
the current release being tested. The tester can identify these requirements from the fact that
they have the value that the tester is searching for in the "Release" attribute. At the same time,
the information about the predicted effort for the realization of a requirement is probably not
relevant for a tester, so the corresponding attribute can be hidden for the specific view for the
tester. The tester can also sort by criticality so that they can begin testing with the critical
requirements. By sorting, a stakeholder can change the focus on requirements (for example,
all requirements with a high criticality at the beginning of a list) without hiding requirements.

Condensed views also show information that is not contained in the requirements in this form.
This information arises, for example, from the creation of totals and subtotals or through the
calculation of percentage ratios. This allows you to determine, for example, the proportion of
requirements with the status "Tested"—where applicable, also weighted by effort. You can
then determine how the degree of completion of the requirements continues to develop over
a specific period of time.

Condensed views can be combined with selective views—for example, to determine the
degree of completion of the requirements in relation to a specific release. The summarization
is calculated on a filtered set of requirements.

The following are examples of views you can create through filtering:

▪ All released requirements

▪ All requirements that belong to a specific release

▪ All requirements that have already been tested

▪ All requirements for which a specific person is responsible

▪ All requirements that a developer has to take into account when implementing a specific
component

52 Requirement Attributes and Views

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 52/ 239

The following are examples of views you can create through sorting:

▪ A presentation of the requirements in the order of their criticality

▪ Sorting the requirements according to the person responsible shows the distribution of
work across the team members

3.9 Optimizing the Assignment of Attributes and Creation of
Views

Practice shows that in some projects, the attributes are not populated to the expected extent,
sometimes even for a good reason. Therefore, it makes sense to check regularly and at specific
points in a project whether, and how, an attribute should still be used [RuSo2009].

In principle, only those attributes that provide a benefit in a view or a report for at least one
stakeholder should be retained. However, the required attributes should be maintained as
well as possible.

One attribute deficit that can be checked easily is where attributes have not been populated.
To find unpopulated attributes, you can either define a view for this purpose or sort by the
corresponding attribute. The requirements with the empty field are then either at the very
top or the very bottom of the list.

If you want a specific attribute to always be populated, the easiest way to ensure this is to
define the attribute as a mandatory field. This forces input when a requirement is created.
However, this is rarely the optimal solution. Note that defining too many mandatory fields can
greatly impede processing and that, when a requirement is initially created, some information
may not be available yet, such as the cost estimation. For this reason, mandatory fields should
be declared only sparingly and with a sense of proportion.

For optional attributes whose entry is not mandatory, the following conclusions can be drawn
from evaluations of their previous use:

▪ The attribute was not used in either a view or a report: this indicates that the attribute
in question does not support a specific goal and is probably not of interest to any of the
stakeholders. This raises the question of the point of this attribute, as every attribute
present causes a maintenance effort.

▪ The attribute is always populated with the same value, for example the default value: in
this case, there does not seem to be any real distinction between the different
requirements in relation to this attribute, which means that the proposed list of values
for selection is not suitable. You can either discontinue the attribute (because nobody
uses it) or adjust the selection list. In the latter case, the notes from Section 3.5 about
changing attribute schemas should be taken into account.

▪ The attribute is never populated: if the attribute has deliberately not been populated,
the information may not be important. If this assumption is confirmed, the attribute
should be removed. However, the reason for attributes not being populated often lies in
the fact that users are not aware of the definition or the benefit of the attribute, or do
not directly see any benefit since the information is used by another stakeholder. Then
the users should be (re)trained to explain to them the added value of the particular
attribute. In this case, the attribute can continue to be used.

Requirements attributes and views 53

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 53/ 239

▪ The attribute is only filled for a few requirements: the question here is whether the goal
associated with the attribute can be achieved, or whether it is still relevant at all. If this
is not the case, the attribute can be removed. However, if it turns out that the attribute
is important, it can be declared as a mandatory field, which forces entry in the future.

In this case, requirements which have already been documented but have no value in
the attribute under consideration must be updated retrospectively (for example,
automatic population with a default value).

▪ The attribute is not populated in individual cases: it must first be determined whether
this attribute is still relevant for the project. If yes, the requirements engineer should
complete the relevant requirements. If the attribute is no longer considered essential, it
can either be removed or the gaps can be tolerated.

▪ The attribute is always populated: in this case, no further activity is necessary.

In addition to checking that attributes have been populated, you should not forget to ask
stakeholders if they are satisfied. They may be missing some information in their views which
is also missing in the attribute schema. The missing attribute or missing attribute value should
then be added and if necessary, populated retrospectively for the requirements that have
already been recorded. It may also be the case that an attribute or value is obsolete. If a
stakeholder no longer needs it in their view, the question should be asked as to whether other
views use the attribute or value, or whether it can be deleted. Care must be taken when making
changes to an attribute schema (see Chapter 3.5).

3.10 Content for the Requirements Management Plan

The requirements management plan documents the attribute schema. The schema describes
the requirements attributes to be used. For each attribute, the name, a description, the person
responsible, permitted values, and dependencies to other attributes are documented. You
create the attribute schema in tabular form, for example, (see Table 2), or in an information
model.

In the requirements management plan, you also define the views to be supported. For each
view, the goal and the stakeholders that use the view are documented, as well as the attributes
to be displayed, the filters to be applied, and predefined sorting. You must ensure that the
attribute schema contains all of the required attributes.

3.11 Literature for Further Reading

[Pohl2010] K. Pohl: Requirements Engineering – Fundamentals, Principles, Techniques.
Springer, 2010.

[RuSo2009] C. Rupp & die SOPHISTen: Requirements-Engineering und –Management. Hanser,
5th edition, updated and extended, 2009 (available in German only).

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 54/ 239

4 Evaluating and Prioritizing Requirements

4.1 Motivation and Difficulties When Prioritizing
Requirements

Not all requirements are equally important. This becomes obvious at the latest when only
some and not all of the requirements can be implemented within a fixed budget or time period.
You then have to decide whether to increase the budget, deliver later, or reduce the scope of
delivery. And suddenly, some requirements—functions or quality requirements—are no
longer indispensable. In some cases, two requirements cannot both be implemented, or at
least cannot both be implemented to the same quality for technical reasons (= requirements
conflict). To resolve this conflict, you have to decide which of the two requirements is more
important. In a lot of cases, the following applies: "Schedule should drive requirements"
[Davi2005]. This means that when time is short, some requirements often have to give way to
other requirements.

Definition 4-1: The priority (or importance) of a requirement documents the importance of a

requirement compared to other requirements with reference to a defined criterion (IREB Glossary

[Glin2014]).

"Compared to" means that this priority does not necessarily require absolute values—for
example, the importance measured in euro, or implementation effort measured in person
days. As the value is being used to compare the requirements, it can be a relative value, on a
scale of 1 to 10, for example. You just want to know which requirement is more important
than another requirement.

The priority of a requirement is the basis for some decisions in the software or system
development process. In addition to resolving conflicts between requirements and release
planning, such decisions include technical decisions as well as prioritization for testing. The
more important or more critical the requirement that is being tested by a test case is, the more
important the test case also is and therefore also the errors found, and thus the more
thoroughly this requirement should be tested.

Definition 4-2: Prioritization refers to the activity of determining the priorities of requirements.

The prioritization prepares the negotiation and selection of requirements as well as the
release planning.

Prioritization is made more difficult by the fact that the importance of a requirement
ultimately depends on many factors, in particular:

▪ The criteria you create

▪ The perspective you take (i.e., the importance of a requirement differs for different
stakeholders)

▪ The decision to be supported by a requirement (i.e., does a low prioritization mean that
this requirement will never be delivered, or will it simply be delivered four weeks later
than the other requirements?),

Evaluation and Prioritization of Requirements 55

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 55/ 239

▪ The point in time at which the importance is evaluated

For example, is it just financial criteria such as costs and benefits that are important, or does
customer satisfaction also play a part, or is the aim to minimize risks? In a system in which
security is critical, for example, reducing risks will be seen as more important than user-
friendliness; in other systems, the reverse is true.

4.2 Principles of Evaluation

The evaluation of the requirements is the basis for prioritizing the requirements. The priority
(that is, the importance) of a requirement is often determined from multiple evaluation
criteria, for example, by comparing the costs and benefits of this requirement.

The following are examples of evaluation criteria:

▪ Implementation effort or other costs

▪ Importance or benefit for the user or other stakeholders

▪ Probable frequency of use of a function

▪ The legally-binding nature of a requirement,

▪ Dependencies between requirements (underlying requirements must be implemented
before requirements that are dependent on them)

▪ Criticality (also referred to as risk)

▪ Stability or the degree of innovation (see the Kano prioritization in Section 4.5.8)

The priorities of the requirements naturally correlate with the priorities of the associated
system functions, test cases, and errors discovered during the test. In other words: if an
important requirement or functionality has errors, these errors are more severe than similar
errors in functionality with low importance that is used only rarely.

Stakeholders with the appropriate qualifications are responsible for evaluating requirements.
For example, the end users or product management are the best persons to evaluate the
benefits of a requirement. The best contact persons for costs are the technical personnel.
However, even the question of which evaluation and prioritization criteria are to be used must
be agreed with stakeholders. It is primarily the users of the prioritization results that do this
(e.g., the project manager), that is, the persons who have to take decisions based on the
priorities. The prioritization criteria must be defined precisely, including the scale to be used
and the evaluation method. For example, should the costs be determined by means of an
evaluation by experts, or by means of a counting method such as the function point method?

Are function points sufficient as a relative dimension or does the effort have to be converted
into person days? And who is permitted to or should perform this evaluation? When (at the
earliest or latest) should the evaluation be conducted?

56 Evaluation and Prioritization of Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 56/ 239

Sources for evaluation criteria include:

▪ Project management

▪ Guidelines and standards

▪ The requirements attribute schema

▪ The disciplines that follow development, such as quality assurance

Requirements management is responsible for ensuring that the priorities are determined and
suitably documented. The attributes are ideal for this documentation. The prioritization
criteria must therefore be part of the attribute schema (see Chapter 3).

The attribute schema in our case study already contains some attributes that
are suitable for prioritizing requirements:

▪ Stability: volatile requirements should not be implemented yet;
instead, they should be shifted to a later point in the release plan until
they have become stable.

▪ Criticality: particularly critical (i.e., risky) requirements are treated
differently to non-critical requirements. For example, the IT security
experts should perform a systematic risk analysis for the risky
requirements. The critical requirements should also be tested
particularly thoroughly.

▪ Priority for the bank: if the goal is to quickly create as much return on
investment as possible for the bank, the requirements evaluated as
"High" here should be the first to go live.

▪ Priority for customers: if the goal is to quickly provide as many user
benefits as possible, the requirements evaluated as "High" here should
be the first to go live.

▪ Effort: the effort can influence the prioritization in two different ways.
The fixed, predefined budget for a release specifies a cost limit.
Therefore, in the release planning, the budget determines how many of
the most important requirements may be selected (i.e., the budget
must not be exceeded). Furthermore, the benefits and effort for a
requirement can be used to calculate the cost/benefit ratio of this
requirement so that this can be used as a prioritization criterion. When
evaluating the importance, it is then not the absolute benefit that is the
deciding factor, but whether the efforts incurred are worth it: do the
benefits exceed the costs, or the costs exceed the benefits?

▪ Release: the release number of a requirement is already the result of a
prioritization, probably due to other prioritization criteria.

▪ Legal liability: all "must" requirements must be included in release 1.

Evaluation and Prioritization of Requirements 57

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 57/ 239

4.3 Prioritizing Requirements

As we saw in the previous section, there is a lot to consider when prioritizing requirements.
The ideal solution is to proceed systematically, in the following order:

▪ Define the goals of the prioritization: Who will need priorities to make decisions and
when will they need them? Which decisions have to be made? Why and for what purpose
is this decision important? Which (higher level) goals should this decision support?

▪ Define the prioritization criteria: Which criteria should be used for the prioritization to
achieve these goals? If, for example, the goal is to maximize the cost/benefit ratio of the
entire project, it makes sense to also determine the cost/benefit ratio for each
requirement and use this criterion in the release planning. The scale and the value range
must also be defined for each criterion. Should absolute or relative values be
determined? This depends on the type of decision to be made and the level of detail
required for the evaluation. If, for example, you want to determine the most important
third of requirements from a list, an evaluation on a scale with 1, 2, or 3 points is
sufficient. However, if you want to create a list sorted by importance, an ordinal scale is
the best solution. An ordinal scale assigns values to the requirements, from "Most
important requirement" through "Second-most important requirement", right down to
the least important requirement. This is represented via a sequential whole number
which can start at 1 for the most important requirement but can also assign 1 to the least
important requirement.

▪ Define the prioritizing stakeholders: The requirements are initially evaluated based on
the evaluation criteria. In each case, different stakeholders may have the necessary
expertise to reliably evaluate the different respective evaluation criteria. Based on these
evaluations, a person or group of persons then prioritizes the requirements. All of these
stakeholders must be selected according to their competence.

▪ Define the requirements artifacts to be prioritized: If the requirements are described at
different levels of detail, you will probably want to prioritize at just one of these levels.
You therefore select the level at which the decision has to be made. If, for example, you
want to select the business processes to be implemented in the first release, you
prioritize only the business processes, and not the refining usage scenarios. It also does
not make sense to compare apples with pears—for example, to compare features with
mock-ups. When selecting requirements to be prioritized, note that the requirements
should be at a similar level of detail to avoid distorting the result of the prioritization
[WiBe2013]. Less refined, more abstract requirements tend to have higher priorities
than more detailed requirements, as a less refined requirement covers multiple detailed
requirements. The primary aim here is to limit the number of requirements to be
prioritized because otherwise the effort involved in prioritization can be very high. (We
will come back to this point later on.)

▪ Select the prioritization technique: This point refers to both measurement procedures
and evaluation methods for determining criteria, as well as a sorting method for the
requirements. Various prioritization techniques are described in Sections 4.4 and 4.6.
These are mainly sorting and measurement procedures. You also have to define who
performs this prioritization and when they do so. It will probably be the case that
different experts will evaluate different criteria based on the required competence.

58 Evaluation and Prioritization of Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 58/ 239

▪ Where necessary, adapt the attribute schema: The priorities of the requirements are
generally documented in attributes. The prerequisite for this, of course, is that the
attribute schema contains the corresponding attributes with the correct value lists. If
this is not the case, you have to adapt the attribute schema. We discuss the points to note
for this critical activity, particularly if the attribute schema is already in use, in Chapter
3.

▪ Prioritization: The prioritization is now performed as planned. All evaluations and
priorities are documented, including the justifications and any assumptions made.

▪ Check the requirements regularly and reprioritize where necessary: Things change over
time—some things become more important, some less important. Sometimes our
knowledge of the facts also improves. Priorities thus also change over time and
requirements must therefore be checked regularly. The best time to do this is always
just before an important decision has to be made based on the priorities.

Stakeholders of the prioritization, goals, and criteria:

In our case study, the changes to the online banking system are to be delivered
in individual releases. The project manager performs the release planning,
supported by our requirements manager, Peter Reber. The following rules are
defined for the release planning:

▪ Stability: volatile requirements are never included in the next release.

▪ Legal liability: all "must" requirements must be included in release 1.

▪ Of the remaining requirements, the most important requirement for
the bank (attribute "Priority for the bank") and then the most
important requirement for the customers (attribute "Priority for the
customers") is selected alternately until the release budget has been
consumed.

Only business processes are to be prioritized, as every release should contain
only complete business processes. Half-implemented business processes are
generally of no use to anybody.

To allow quick decisions in cases of crisis or conflict, the project manager
wants to always be able to see a sorted list of requirements, sorted either by
their importance for the bank or their importance for customers. In addition
to the business processes, the project manager would also like to see the user
and system use cases prioritized, as well as all solution-based requirements.
However, it soon became clear that this detailed prioritization would involve
an enormous amount of effort.

Prioritization workshops lasting hours or even days would be necessary.
Therefore, there is initially no prioritization of the solution-based
requirements (and therefore no workshop).

The IT security experts use the attribute "Criticality" to note requirements for
the next steps: requirements evaluated as "High" are to be subjected to a
thorough risk analysis by the group, including an error tree analysis; the
"Medium" criticality level requirements are to be subjected to a normal risk
analysis by one person; and the requirements evaluated as "Low" criticality
will not be considered further.

Evaluation and Prioritization of Requirements 59

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 59/ 239

The goal of this procedure is to draw attention to the particularly relevant
areas.

The usability expert will deal intensively with the requirements that are
particularly important for the customers.

The attribute schema therefore contains all of the attributes required for
decision making (see Chapter 3). The potential introduction of a further
attribute that highlights all requirements that are particularly important for
accessibility was briefly considered. However, an initial analysis established
that this would apply for almost all requirements. The attribute would
therefore not be useful for the intended purpose as a differentiation and
prioritization criterion. Therefore, this plan was abandoned.

We will select the appropriate prioritization techniques later in the chapter,
once you have learned about the different techniques.

4.4 Two Types of Prioritization Techniques

There are a lot of prioritization techniques. They differ in the level of effort required, the level
of subjectivity and the rate of errors, and in their suitability for different purposes. We cannot
provide a complete overview of all the techniques that exist here. Therefore, we present the
techniques that are the most important, most widespread, and most suitable for practice.

We assume a situation in which the goals and criteria for the prioritization have already been
defined, as well as the persons who can evaluate (or often, even predict) which requirement
will fulfill which criteria and how well. The artifacts to be prioritized have also been defined.
If you have a complex requirements landscape and, for example, specify the requirements at
different levels of detail, you should compare only those requirements that are at the same
level of abstraction. Anything else would be a case of comparing apples with pears. To get
reliable results, depending on the decision to be made, you should prioritize at only one level
of detail: the level at which this decision is to be made. For example, if the goal is to select the
most important business processes for the first release to be delivered, then prioritize the
business processes. Alternatively, if you want to define the order of implementation of the use
cases, then prioritize the use cases. The starting point for the prioritization is therefore an
unsorted list of requirements at the same level of abstraction.

The prioritization technique converts this list into a sorted list in which a priority value is
assigned to every requirement. Further activities are then possible based on this list, such as
the release planning.

We differentiate between two types of prioritization techniques:

▪ With an ad-hoc prioritization technique, an expert assigns a value to every requirement
(based on experience). This can be done quickly but is more prone to error.

▪ The analytical prioritization technique is a more systematic process, comparing, for
example, pairs of requirements with one another; or different experts evaluate different
criteria, which then results in the priority. This technique involves more effort, but the
result is more reliable and has been created more carefully.

60 Evaluation and Prioritization of Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 60/ 239

4.5 Ad-Hoc Prioritization Techniques

The following ad-hoc prioritization techniques have proven to work well in practice:

▪ Requirements triage

▪ Ranking

▪ Top-Ten Technique

▪ Single-criteria classification

▪ Planning Poker

▪ Two-criteria classification

▪ 100-dollar technique

▪ Kano classification

4.5.1 Requirements triage

Requirements triage [Davi2003] is a single-criteria classification based on medical science. It
can also be used to presort requirements and to simplify the prioritization. Each requirement
is assigned to one of three categories:

▪ Requirements which "must" be implemented (e.g., in the next release)

▪ Requirements that are not necessary (yet)

▪ Optional requirements, for which the priority is not yet clear; these requirements need
to be prioritized more precisely, or their implementation depends on the available
resources

The optional requirements can be evaluated with a different prioritization technique. For the
other two requirements groups, the decision has already been taken. If there are too many
"must" requirements, or you want to put them in order, a more detailed prioritization makes
sense here.

Triage can also be used for other decisions as well as deciding which requirements to
implement.

4.5.2 Ranking

In the ranking technique, the stakeholders sort the requirements into an order based on the
prioritization criterion (e.g., benefits, costs, urgency). Any prioritization criterion is possible
here. As a result, the requirements are assigned to the ordinal scale we have already
mentioned (see Section 0), in which, for example, the most important requirement receives
number 1, the second most important number 2, and so on. If the number of requirements is
low, they can be sorted ad-hoc at a glance. This can be done, for example, by writing the
requirements on index cards and then sorting them on a table, in a group if desired.

Evaluation and Prioritization of Requirements 61

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 61/ 239

If there are more requirements than you can compare at a glance (e.g., more than 10), either
presorting (triage) or a systematic sorting procedure helps. After presorting by means of
requirements triage, you then use the prioritization technique within only one category of
requirements—for example, for the optional requirements.

The following is recommended as a systematic sorting procedure: you place a requirement on
the table (or display it electronically). You then take the next requirement and decide whether
it is more or less important than the first requirement. You then place this requirement either
further up or further down in a list accordingly. As far as possible, no two requirements should
have the same rank, although an equal evaluation would be possible in an exceptional case.
You then proceed in the same way with every additional requirement. It is usually quickly
clear whether the new requirement is relatively important or unimportant and should
therefore be compared with the requirements at the top or bottom of the list. In the end, you
have a complete list of the requirements sorted by priority.

4.5.3 Top-Ten Technique

You often do not need a completely sorted or prioritized list of requirements. It is often the
case that you are simply looking for that group of requirements that currently has the highest
priority and should be processed in the next step—for example, implementation or testing.
The approximate number of requirements you are looking for is also often clear. If, for
example, a requirement causes an average implementation effort of four days, and in the next
iteration, resources are available for 40 person days, the objective of the prioritization is to
determine the ten most important requirements: the top ten. The remaining requirements do
not need to be prioritized other than determining that they do not (yet) belong to the top ten.
Of course, the method also works for the most important three or twenty-four requirements,
for example.

The procedure is as follows: in the first round, you collect all candidates for the top ten. You
will probably not get exactly ten candidates. If there are too many candidates, select those that
do not initially belong to the top ten. If there are not enough candidates, look at the rejected
requirements again. Removing requirements from the list of candidates is usually easier than
looking at all requirements again.

Therefore, in the first round, if there is any doubt about a requirement, you should include it
as a candidate rather than reject it. To remove requirements from the top ten list, you can use
one of the other prioritization techniques (e.g., ranking or the techniques described below)
and then cut the sorted list of requirements off after number 10.

If multiple stakeholders or stakeholder groups (e.g., five) are involved in the prioritization,
you could, for example, arrange the process such that the five groups are each allowed to select
their top two requirements, resulting in the top ten list.

4.5.4 Single-criteria classification

With single-criteria classification, you evaluate each requirement in order according to the
prioritization criterion.

62 Evaluation and Prioritization of Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 62/ 239

You can use any useful scale—for example, absolute values such as the implementation effort
in person days, or relative values on a points scale that you define yourself (e.g., 0 to 10
points), or categories such as low/medium/high or mandatory/optional/nice to have. You can
do this relatively quickly. However, you must define clearly beforehand what each number of
points means. For example, you can define that criticality 10 can only be assigned if there is a
risk to human life or the existence of the entire company, or that each requirement for which
the work is possible by means of a workaround if the requirement is not implemented is an
optional requirement. The greater the number of people involved in the prioritization—
regardless of whether that is in a group or if an average value is to be calculated from the
individual evaluations of the evaluators—the more important such definitions are. If this is
not done as described, where prioritization is performed in groups, time will be wasted in a
lot of cases—for example, due to the discussion of the meaning of the points value 10, rather
than a discussion about the priorities themselves.

If you compare and aggregate independent evaluations by different experts, in principle you
receive more reliable values than in a group discussion, as groups cannot always decide
optimally because of the effects of group dynamics. However, you also see then that different
evaluators have different levels of optimism. One evaluator assigns the value 1 more often, for
example, and generally lower values, whereas another assigns the value 10 more often and
this evaluator's values are higher on average overall. However, this difference is often due less
to differences in character, and more to a different understanding of when the extreme values
1 and 10 are to be assigned.

4.5.5 Planning Poker

In planning poker, the requirements are also evaluated with reference to a criterion, usually
with reference to costs or the benefits of the requirements with regard to the scheduling of
the requirements in specific releases. This technique is widespread in agile development but
also works in other areas as well.

It takes into account the pitfalls of decision processes in groups and therefore potentially leads
to better evaluations than a group discussion. We have already mentioned the effects of group
dynamics. When experts evaluate separately, they can, however, develop a different
understanding or overlook a relevant factor.

Therefore, planning poker uses a pragmatic compromise between individual evaluation and
group discussion as its decision process. Furthermore, the evaluation is based not on an even
scale of points from 1 to 10, but on Bernoulli numbers which have been proven to work for
this purpose. Each of the evaluators sitting at the table together receives a set of playing cards
with the following points values: 0, 1, 2, 3, 5, 8, 13, 21, 34. There are also cards that the
evaluators can use to register a need for discussion or a break.

To prioritize the requirements together in the group, the process is then as follows:

1. Presentation of the requirement to be prioritized (2 minutes)

2. Each evaluator makes their own evaluation (½ minute): each evaluator selects one of
their cards and places it face down on the table to signify that they have made their
decision. The other evaluators thus see only the back of the card.

3. The cards are revealed simultaneously: as soon as everyone has selected a card, all
evaluators turn over their cards.

Evaluation and Prioritization of Requirements 63

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 63/ 239

4. Explanation of the highest and lowest evaluations (1 minute): the two people who have
given the lowest and the highest evaluation each explain their value. Their evaluations
are usually based on different assumptions than those made by others, either justifiably
or unjustifiably. These assumptions are now discussed.

5. Everyone makes their own evaluation (½ minute): based on the new knowledge
provided by colleagues, the evaluations are repeated: everyone selects a card and places
it face down in front of them.

6. The cards are revealed simultaneously

7. Agreement on an evaluation (1 minute): in the second round of evaluations, the values
are closer but not necessarily identical. The group can now decide to take either the most
frequently occurring value or the average of the evaluations.

This technique can be used for all prioritization criteria imaginable—costs, benefits, or other
criteria.

4.5.6 Two-criteria classification

In some cases, multiple prioritization criteria are to be considered simultaneously. There are
various options for combining two criteria:

▪ With a formula: If, for example, you are interested in the cost/benefit ratio, for each
requirement, you determine firstly the costs and then secondly the benefits. This
process probably involves questioning various stakeholders—for example, technical
experts for the costs and the users for the evaluation of the benefits. The cost/benefit
ratio is then calculated for each requirement from the quotient between the two values.
The requirement with the highest benefits per cost unit invested then has the highest
priority. In this process, the costs and benefits do not necessarily have to be determined
in the same unit (e.g., euro). A ratio in the unit "points/person day" is also useful.

For the purposes of documentation and use in views, it makes sense to define not only
the cost and benefit evaluations in a separate attribute in the requirements engineering
tool, but also their quotient.

▪ With a matrix: You can determine the criticality of a requirement as its calculated risk,
for example, which is defined as the probability of occurrence of a risk event multiplied
by the damage incurred if the event occurs. With online banking, these risks can be very
high. However, this number does not ultimately contain all the relevant information.
Extremely rare catastrophes with an almost inestimably high level of damage amount
perhaps to €10 per month, in the same way that small accidents that occur regularly and
cause damage of €0.01 each time also amount to €10 per month. In many cases, these
categories will be handled separately and differently. Instead of multiplying the
probability by the damage, the preference is to create a risk matrix to present the risks
in a two-dimensional diagram for the purpose of classification.

Figure 4 shows an example of a matrix in which requirements are prioritized according to
their cost/benefit ratio. At the very top left (Priority 1) we can see the quick wins—that is,
requirements that bring a high benefit at low costs. These thus receive priority 1, the highest
priority. In the fields with priorities 2 and 3, the benefits are also still higher than the costs.
The requirements on the diagonal, where the costs and benefits more or less balance out, are
classified in the same category (Priority 4), and so on.

64 Evaluation and Prioritization of Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 64/ 239

How you assign the requirements in priority categories based on the two criteria is your
decision and naturally influences the next steps, for example, the release planning.

Figure 4: Prioritization matrix for requirements according to costs and benefits. B/C designates the ratio (i.e., the

quotients) of benefits and costs.

Figure 5 shows an example of a prioritization matrix according to risk (= risk matrix). Here,
the risks linked to a requirement are prioritized and thus also the criticality of the
requirement which is threatened by the risk. For example, the requirement (and the
functionality) for transfers in online banking bears the risk that hackers will be able to get
hold of the account holder's access data and execute an unauthorized transfer. This risk is
possible and serious and is therefore in a red box in the matrix. This means that
countermeasures must be taken at all costs.

Evaluation and Prioritization of Requirements 65

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 65/ 239

For the risks in the yellow area, you weigh up which measures make sense economically. The
risks in the green area may be accepted, unless they can be prevented with simple
countermeasures. The three areas of the matrix therefore determine how the respective risks
are to be handled.

Figure 5: Risk matrix for the prioritization of requirements with reference to risk and criticality

4.5.7 The 100-Dollar Technique

The 100-dollar technique [LeWi2000] is particularly suitable for prioritization with multiple
persons who do not necessarily have to meet up for a group discussion.

With this technique, stakeholders are granted 100 imaginary units (money, time, etc.) which
they can assign to the requirements. Any requirement that is worth, for example, double the
amount of money to a stakeholder than another requirement should also be assigned double
the number of units/points. Each stakeholder can assign a maximum of 100 units. At the end,
the points that the different stakeholders have assigned to the same requirements are added
up. The requirement with the most points has the highest priority.

This technique is difficult to implement for larger numbers of requirements. In that situation,
the stakeholders find it difficult to weigh up all of the requirements against one another, and

66 Evaluation and Prioritization of Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 66/ 239

it is also more difficult to ensure that a maximum of 100 points is assigned. Therefore, we
recommend this technique for prioritizing rough requirements (e.g., features) with a high
level of abstraction, or for mutual prioritization of entire requirement groups. Within the
requirement group, the 100-dollar technique can then be used to compare the requirements
with one another.

Two situations must be avoided with this technique: if the stakeholders want to make their
lives easier, they assign the same number of points to every requirement. For example, in the
case of 100 requirements, every requirement receives exactly one point. At the end of the
process, all requirements will be equally important and there will be no benefit from the
prioritization. Therefore, advise the stakeholders that they should ideally assign their points
unevenly to allow clear statements to be obtained. If a stakeholder does in fact assign identical
numbers of points to every requirement, you can also reject these evaluations and ask for a
new evaluation.

The stakeholders must also submit their evaluations independently of one another to avoid
influencing one another. Independent voting can be achieved via a questionnaire or individual
interviews. In a vote within a group session, one stakeholder could "repair" an evaluation
made by a colleague that they deem to be incorrect by counteracting this evaluation. However,
even knowing the preferences of the other evaluators (without knowing how many points
they have assigned) influences the voting procedure. If a stakeholder knows that other
stakeholders will give his favorite requirement a low value, but give other important
requirements a lot of points, this first stakeholder will award his favorite requirement more
points, trusting that the other requirements will receive their points from someone else.
Again, at the end, all requirements will appear to be equally important.

The 100-dollar technique can also be applied in a variant with 1,000 or 10,000 units. A greater
number of points naturally allows more differentiated evaluations. However, the
prioritization also causes more effort, and it is more difficult to check how many points a
stakeholder has awarded in total. From a practical perspective, this requires a tool.

4.5.8 Kano classification

In the Kano model [Kano1984], requirements are classified and prioritized in three categories
with respect to user expectations. The Kano model is already described in detail in the
handbook for the Foundation Level [PoRu2011] and is therefore repeated only briefly here.
In this technique, the requirements are assigned to one of three categories:

▪ Basic factors are requirements where the users take fulfillment of the requirement for
granted. Therefore, fulfillment of the requirement does not make them explicitly
satisfied, but if the requirement is not fulfilled, they are very unsatisfied.

▪ Performance factors are requirements explicitly required by the users. Fulfillment of
these requirements makes the users satisfied; non-fulfillment makes them dissatisfied.

▪ Excitement factors are requirements that the user does not expect. If the requirements
are not fulfilled, the user does not notice. However, if the requirements are fulfilled, the
user is excited about this innovation.

To determine which Kano category a requirement belongs to, ask the users two questions:
How satisfied would you be if the requirement were fulfilled (satisfaction)? How dissatisfied
would you be if the requirement were not fulfilled (dissatisfaction)?

Evaluation and Prioritization of Requirements 67

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 67/ 239

Figure 6 shows a matrix for a two-criteria prioritization according to Kano. You can see that
in addition to the three requirements categories referred to above, there is a further category,
which appears only rarely: the insignificant requirement.

Figure 6: Matrix for a two-criteria prioritization according to Kano

4.6 Analytical Prioritization Techniques

The ad-hoc prioritization techniques have the advantage that they are easy to use and very
efficient. However, their results are subjective and often impossible to trace at a later point in
time. They are not optimal for critical decisions or in a security-critical environment. In these
situations, analytical prioritization techniques allow a more neutral and more traceable
prioritization. We present two techniques here:

▪ Prioritization matrix according to Wiegers

▪ The Analytical Hierarchy Process (AHP)

68 Evaluation and Prioritization of Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 68/ 239

4.6.1 Prioritization Matrix according to Wiegers

The prioritization matrix according to Wiegers is a prioritization technique that uses more
than two criteria to prioritize requirements. It compares the relative advantage (of the
fulfillment) and relative disadvantage (of the non-fulfillment) of every requirement with the
relative costs and the relative risk of this requirement [WiBe2013]. Figure 7 shows an
example or rather an extract from such a matrix for our online banking system.

Figure 7: Prioritization matrix according to Wiegers for an example

The procedure for calculating the priority is as follows:

1.) Create or obtain a template

2.) Define and enter the weighting of the prioritization criteria: in our example of the online
banking system, the risks outweigh the costs, for example.

3.) Add the list of requirements to be prioritized. As noted previously, these requirements
should be at the same level of detail. We use example usage scenarios here.

4.) Evaluate each requirement with reference to the prioritization criterion "Benefit" that
fulfillment of the requirement brings, using the matrix according to Wiegers on a scale
from 1 to 9

5.) Evaluate each requirement with reference to the prioritization criterion "Disadvantage"—
that is, the disadvantage of non-fulfillment of the requirement, again on a scale from 1 to
9

6.) Calculate the total value of both evaluations as a weighted total, weighted according to the
weighting factors. This total can be calculated automatically in a template.

7.) Calculate the percentage value of every requirement with reference to the total list of
requirements: total value/total of all total values. This can also be calculated automatically.

8.) Evaluate each requirement with reference to the prioritization criterion "Costs", again on
a scale from 1 to 9

9.) Calculate the percentage portion of the costs based on the total costs: costs / total of all
costs

10.) Evaluate each requirement with reference to the prioritization criterion "Risk", again on
a scale from 1 to 9

11.) Calculate the percentage portion of the risk based on the total risk: risk / total of all risks

Evaluation and Prioritization of Requirements 69

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 69/ 239

12.) Calculate the priority of each requirement according to the following formula:
Priority = value %/(costs% x weighted costs + risk% x weighted risk). This is a
prioritization according to the cost/benefit ratio, whereby the risk is added to the costs.
(Other prioritization techniques deduct the risk from the benefit.)

13.) Determine the rank of each requirement: the higher the priority of a requirement, the
higher its rank.

Prioritization of the requirements with the prioritization matrix
according to Wiegers

In our case study, the requirements manager Peter Reber has decided to use
the Wiegers method because in the bank environment, decisions must be
taken carefully and based on solid reasoning. In addition to the matrix
according to Wiegers, the justifications for the respective evaluations are also
to be documented—that is, why each number of points was assigned in the
respective field.

The values are evaluated by the following stakeholders: with reference to the
benefits and disadvantage, the usability expert performs requirements triage
and sorts out the requirements that are very important and those that are very
unimportant and assigns points to them. The Customer Advisory Board
determines the benefits and disadvantage of the remaining requirements.
With regard to the costs, the developers are questioned. They determine the
costs together by means of planning poker. The IT security experts investigate
the risk. To do so, they first use a risk analysis to determine which risk events
can even occur with reference to a requirement. Then, based on their
experience, they use AHP to determine the probability of occurrence, and an
analysis of company-specific statistics and key figures to determine the
damage.

Figure 7 shows the results of the evaluations or rather an extract from the
results. We can see that the relatively unimportant but less expensive and less
risky callback function has made it into second place, ahead of the transfer.

Practical tip: Of course, the result of the prioritization depends on the prioritization criteria

selected and the technique used! If you had classified the above-mentioned requirements with

the Kano method, as a basic function of online banking, the transfer would naturally have been

more important than the callback function. Therefore, make sure you select the prioritization

criteria wisely!

70 Evaluation and Prioritization of Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 70/ 239

4.6.2 The Analytical Hierarchy Process (AHP)

The analytical hierarchy process (AHP) is a mathematically sophisticated, theoretically very
interesting model. To benefit from the advantages of AHP, it is advisable to use a tool that
supports the method and performs the required calculations.

The basic idea of the method, however, is simple. The prioritization is simplified for the
evaluator, who has to compare only two requirements as a pair: which of the two is more
important (or more expensive or riskier) than the other and by how much? Any prioritization
criterion is possible here. This decision between two requirements is easier to make than
deciding which requirement from an entire list of requirements is the most important.
However, the disadvantage of the method is that each requirement has to be compared in a
pair with every other requirement. For n requirements, this results in n (n-1) /2 comparisons.
This creates a lot of effort. An example calculation for the effort is given in the practical tip
below. The great strength that no other method can demonstrate is that this method can
balance out errors made by the evaluators. If, in the case of three requirements A, B, and C, A
has been deemed to be more important than B, and B more important than C, then A must also
be more important than C. However, if C is deemed to be more important than A, there is
obviously an error. The method can measure how good and reliable the evaluations are
overall using a "consistency ratio". The mathematics of the method were described by the
inventor Saaty [Saat1990]. A summary of the method is given by Karlsson and Ryan
[KaRy1997].

Here, we are particularly interested in the procedure from the evaluator's view. The evaluator
receives two requirements for selection and has to decide which of the two is more important.
The scale from Figure 8 is used for this. Apart from the fact that the evaluator has to do this
for a large number of pairs of requirements, there is no further difficulty for the evaluator in
this method. A tool or an expert performs the evaluation and then determines the priorities
for the requirements.

Figure 8: AHP scale for the comparison of two requirements

Open source tools are available to support AHP, for example PriEsT [SMK2013], [PriEsT].

Practical tip: For each requirement, the matrix according to Wiegers requires an evaluation of four

different values. You have to assume that each evaluation takes 1–2 minutes. Therefore, if you

have 100 requirements in your list, the effort involved is 400–800 minutes, 6.7 to 13.3 hours,

without any breaks.

In planning poker, with a disciplined process, prioritizing one requirement takes five minutes. 100

requirements therefore take 500 minutes, 8.3 hours.

Evaluation and Prioritization of Requirements 71

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 71/ 239

AHP has the worst average: for 100 requirements, you have to perform 100 x 99 / 2 = 4950

comparisons. If every comparison takes between half and one whole minute, this results in an

effort of 41 to 82 hours, 5–10 working days per evaluator.

You should therefore consider carefully in advance which requirements you want to prioritize and

how many people are really needed for this. The ad-hoc techniques usually evaluate only one or

two criteria for each requirement, and therefore they require correspondingly less effort provided

time is not lost through long discussions. If we assume 1–2 minutes per requirement, the result

for 100 requirements is 1.6 to 3.3 hours.

The use of the matrix according to Wiegers and the AHP method is recommended only for

requirements lists with a maximum of 30 requirements [WiBe2013], [Mois2002].

4.7 Combining Prioritization Techniques

Different prioritization techniques have different advantages and disadvantages. The ad-hoc
techniques are easy to use but lead to less traceable and not completely objective results. The
analytical techniques are better, but do not scale well. In the prioritization matrix according
to Wiegers, four evaluations have to be performed for each requirement, and with AHP, the
prioritization of double the number of requirements does not produce double the amount of
effort, as is the case for most techniques, but rather four times the effort. Where requirements
lists are long, therefore, an effort of many hours or even days arises.

As many projects work with hundreds or even thousands of requirements, pragmatic
solutions are required. In most cases, it is not necessary to prioritize the entire requirements
list in detail. You can save a lot of time but still achieve an almost identical prioritization
quality by combining an ad-hoc technique with an analytical technique.

For example, in the first round of the prioritization, you can use an ad-hoc prioritization
technique to reduce the number of requirements to be considered. If, for instance, you want
to determine the most important requirements for the next release, you do not need a
particularly sophisticated prioritization for the requirements that are currently less
important as these will initially be deferred in any case. Even for the apparently urgent
requirements, no further differentiation is necessary. However, a closer examination is
worthwhile for requirements that initially appear to be approximately equally important, but
one is to be included in the release and others have to be postponed. In this requirements
group, you can now use an analytical technique to draw the dividing line between the
requirements that will be included in the release and those that will not.

In our case study in Section 4.6.1, we have already presented possible combinations of
different prioritization techniques. Which technique you use and how you use it depends on
which criteria are to be used for the prioritization, what the goal of the prioritization is
(determine the top ten? Weigh up two groups of requirements?), how much time is available,
whether one or more persons are to be questioned (some methods are less suitable for
decision making within a group), and the level of knowledge of the stakeholders.

72 Evaluation and Prioritization of Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 72/ 239

4.8 Content for the Requirements Management Plan

When creating the requirements management plan, you have to define the criteria to be used
to prioritize the requirements (based on which decision), when they are to be prioritized, by
whom, and using which technique. Make sure that the attribute schema contains the attributes
that correspond to these prioritization criteria. This is the only way to document the priorities
in the attributes in the requirements management tool and to evaluate the priorities—for
example, to filter out the most important requirements for the release or iteration planning.

4.9 Literature for Further Reading

[Cohe2005] Mike Cohen: Agile Estimating and Planning, Prentice Hall International, 2005.

[Davi2005] Alan M. Davis: Just Enough Requirements Management - Where Software
Development Meets Marketing. Dorset House Publishing, 2005.

[Ma2009] Qiao Ma: The effectiveness of requirements prioritization techniques for a medium
to large number of requirements: a systematic literature review. Master Thesis, AUT
University, 2009, http://aut.researchgateway.ac.nz/bitstream/10292/833/3/MaQ.pdf.

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 73/ 239

5 Version and Change Management

Life as a whole is marked by changes and new requirements that are motivated partly by
external factors and partly by internal factors. In the same way, we encounter change requests
in all projects, from town planning to software development.

Changes are not necessarily bad in themselves and they take place regardless of how well the
originally accepted contractual basis or the accepted requirements document was. In the
development of technical systems in particular, beyond the phase of requirements elicitation,
we experience a strong rise (albeit not constant) in the awareness of problems and solutions
through lessons learned over time.

"Requirements are rarely static. Although from the development management perspective, it is

desirable to freeze a set of requirements permanently, it is rarely possible. Requirements that are

likely to evolve should be identified and communicated to both acquirers and the technical

community. A core subset of requirements may be frozen early. The impact of proposed new

requirements are evaluated to help ensure that the initial intent of the requirements baseline is

maintained or that changes to the intent are understood and accepted by the acquirer."

[ISO29148]

To ensure that you keep changes under control and that you are not controlled or
overwhelmed by changes, as the requirements manager, it is particularly important that you
are prepared for handling changes. Therefore, in the requirements management plan, plan
how you want to handle changes as part of the elicitation of requirements and in the
subsequent phases of the project. The following sections explain the basic concepts for finding
your way in the jungle of continually changing requirements and requirements documents
(version control). The sections also explain the reasons for change and how these changes can
be implemented by a change management process.

5.1 Versioning Requirements

Versioning requirements enables you to track the development of a requirement over its
entire lifecycle.

This means that by versioning requirements, at any point in time we can:

▪ Make statements about the frequency of changes

▪ Check the evolution of individual requirements

▪ Access previous versions of requirements

In direct conjunction with versioning requirements, we have to look at configuration
management. Here, specific sets of requirements versions are grouped in a requirements
configuration (see Section 5.1.2).

74 Version and Change Management

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 74/ 239

Software configuration management is the discipline for tracking and controlling the
evolution of software. It is essential for the development and maintenance of large, long-
lasting software systems [BSB2008].

The following sections describe:

▪ How a version control can be implemented for requirements

▪ What requirements configurations are

▪ What requirements baselines are

▪ Important points in the parallel further development of requirements

5.1.1 Version Control for Requirements and Requirements Documents

Version control for requirements refers to the process that enables specific development
statuses of requirements and requirements documents to be kept available throughout the
lifecycle of a system or product.

Definition 5-1: Version control: Version control (or a version control system) is used to document,

manage, and restore documents, files, and individual artifacts (e.g., requirements). Version control

allows you to trace changes to documents and artifacts and to revise changes made so that you

can return to old versions. Version control therefore enables a sequential consideration of the

evolution of a document or artifact over its entire life.

However, before we look at versioning and version control for requirements, we will digress
briefly to look at the statuses of requirements, as although statuses and versions are closely
related, and are therefore often mixed or confused with one another, they are actually two
different concepts.

Statuses of requirements

Definition 5-2: Status according to [RuSo2009]: "Statuses specify the progress of the processing of

the requirement. If we compare the life of a requirement with a project plan, then the statuses of

the requirement often correspond to the milestones in the project plan."

If we look at the evolution of an individual requirement or a requirements specification, over
the course of its lifecycle, this requirement or requirements specification will have different
statuses: for example, starting with "Created" when the requirement is recorded, through "In
evaluation", "Released", and so on, see Figure 9. For an individual requirements artifact, these
statuses can be documented via an attribute, for example (e.g., status), for the respective
requirements artifact (see Chapter 3).

In contrast, documents often contain an introductory part which, in addition to the title, the
author, the date of the last change, and the version number, also contains the status of the
document. In this case, the document status is generally dependent on the status of the
individual requirements in the document.

Version and Change Management 75

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 75/ 239

You can define which statuses and status transitions are permitted for requirements artifacts
or documents individually for your project. The required statuses and status transitions are
dependent on the project being executed and the requirements engineering process, including
the planned review cycles.

Figure 9 illustrates a simple status machine that presents the possible statuses and status
transitions for a requirements artifact. For example, a requirement can be created as version
0.1, move to the status "In evaluation", be released, and even implemented, without there ever
being a change to the content of the requirement that would have necessitated a new version.

Figure 9: Statuses and status transitions of a requirement

Versions, versioning, and version control

Compared to the status of a requirement—which represents, for example, a project-specific
lifecycle of the requirement—a requirement version describes a specific content status of a
requirement. It is therefore possible that a requirement with the status "Created" will go
through several version statuses before being set to the status "In evaluation". The same
applies for a requirement that has been rejected which may be changed in multiple iterations.

Definition 5-3: Version: A version is a specific content status of a requirements artifact or

document at a specific point in time. Versioning allows you to trace the history of a requirements

artifact or document back without any gaps and reset it to an earlier version. Changes to content

always lead to new versions.

From this point on, we refer to the process of creating new versions as versioning. Versioning
can take place at different levels (e.g., at document level or at the level of atomic
requirements).

▪ In the case of versioning at the document level, every change to the content of a
document (e.g., a change to one or more requirements within the document) must lead
to a new version.

▪ In the case of versioning at requirement level, every change to the content of a
requirements artifact must lead to a new version of the requirement.

76 Version and Change Management

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 76/ 239

With regard to versioning, note that the "new" version always completely replaces the "old"
version. If, therefore, you describe one or more textual requirements with a model-based
description (e.g., activity diagram), and the model-based description is merely a
supplementary (formalized) view, this is not a new version of the original requirement. This
is actually a supplementary description which may and should exist in parallel. To make this
dependency clear, you can use traceability relationships—we discuss these in Chapter 6.

Versioning enables a version control which allows the requirements manager, for example, to
compare different documentation statuses (versions) with one another or to go back to
previous documentation statuses (versions) (see Definition 5-1: Version control).
According to [WiBe2013], version control includes the following activities:

▪ Definition of a schema to identify versions: Define the schema to be used to version
requirements and requirements configurations and documents. For example, a new
version of the requirement is created by incrementing the version number, but the
requirement ID remains unchanged.

▪ Identification of versions of individual requirements: Define how changes to
individual requirements should be identifiable. Define, therefore, what information
must be recorded to document the change to the last requirement version sufficiently.

▪ Identification of versions for requirements configurations (or documents): Define
how changes to requirements configurations should be identifiable. Define, therefore,
what information must be recorded to document changes to the last document version
sufficiently.

There is no fixed, prescribed specification for versioning requirements or documents. In
principle, you can identify different versions with whole version numbers (i.e., 1, 2, 3, etc.).
However, the recommendation is to use a versioning based on increments, so that the version
number gives a first indicator of whether the change is a fundamental change or a marginal
adjustment (e.g., correction of a spelling or grammar mistake). An increase in the increment
generally represents a marginal adjustment to the content, whereas the increase to a full
version represents an extensive adjustment to the content. The classification as a marginal or
extensive change is of course primarily a subjective decision. However, these decisions can be
objectified with some conventions.

Versioning requirements documents

When versioning documents, the recommendation is to always use a tool for version
management (version control system). If you are versioning documents manually, it makes
sense to use a versioning indicator (e.g., based on increments) in the file name. This enables a
dedicated version to be created for every revision to the document.

To document a change, it is also important that a document has a document history (on the
first pages, see Table 4) so that the changes performed can be recognized at a glance. The
document history should always contain at least the following information:

▪ The new version number of the document

▪ The date on which the change was performed

▪ The person who made the change

▪ The changes that were made

▪ The reason for the change

Version and Change Management 77

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 77/ 239

Version Date Name Change/Reason for Change

0.1 2014-09-19 Reber Initial version

0.2 2014-09-20 Reber Changes to requirements Req-0010, 0011, 0030, 0090

0.3 2014-09-30 Reber Changes to the priority of requirements Req-0010,
0011

1.0 2014-10-02 Reber Version created for first review

1.1 2015-10-15 Reber Changes maintained based on the review results, Req-
0030, 0034, 0035, 0089, 0090

Table 4: Example of a document history

Versioning requirements artifacts

A requirements management tool is recommended for versioning requirements.
Nevertheless, versioning can also be performed without a tool.

When you change requirements (i.e., when you create a new requirement version), as a
minimum, the following information must be documented to describe the change compared
to the previous version:

▪ The new version number of the requirement (whole number or increment)

▪ The change action performed compared to the last baseline (e.g., deletion)

▪ The change made to the content of the requirement

▪ The reason for the change (i.e., what or who was decisive for the change)

▪ The name and role of the person who performed the change

▪ The time of the change (date + time)

Req.
ID

Date Version Name Reason for Change Action Requirement

Req-
30

2014-09-
19

1 Reber Created The system
should (a)

Req-
30

2014-09-
20

2 Reber Changes due to new
information from the
department

Changed The system
should (b)

Req-
30

2014-10-
15

3 Reber Change due to a review by
Max Muller

Changed The system
should (c)

...

Table 5: Example of requirements versioning

Note: If you are using a requirements management tool, some of this information (e.g., new

version number of the requirement, the person making the change, the time of the change) will

be documented automatically without you having to invest additional time here.

78 Version and Change Management

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 78/ 239

Before Peter Reber's time, requirements were described in Word and Excel
documents. Nevertheless, a minimum level of attribute assignment and
versioning was observed. The example below shows an extract from an old
requirements document. The left column shows the requirement ID together
with the version number—certainly not the best method of documentation,
but better than nothing. Revised or deleted requirements were given a new
status and ID accordingly. We can see two versions for requirement BR_0040:
the rejected v1 ("Revised") and the current v2 ("Modified"). The information
about why the requirement was changed, who triggered the change, and
when the change was performed is not visible here. Nevertheless, there is at
least a minimum versioning which, in the future, should be performed
automatically with a tool as soon as changes are made to a requirements
artifact.

Figure 10: Practical example of requirements versioning with Word

Practical tip: Requirements management tools are not yet used in all businesses and therefore, in

everyday life in projects, we often encounter document-based requirements specifications (e.g.,

in Microsoft Word). A versioning at requirement level in the manner described above is therefore

not possible without a lot of effort. If you find yourself in such a situation, use this procedure at

least at document level and use the revision mode options or identify your requirement changes

clearly with deletions and comments (see Figure 10). Of course, this is not the textbook method,

but it at least indicates which requirements have been deleted and which have been changed.

Furthermore, in documents, it is helpful to place a document history at the beginning of the

document to give readers a quick overview of the history of the document and the changes it

contains (see Table 4).

Version and Change Management 79

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 79/ 239

Access to current versions

Make sure that all relevant project participants can access the currently valid (released)
requirements versions; this is not necessarily the same as the latest version of the
documentation, which may be in review, for example, and not yet released. However, the
processors of the requirements and the requirements manager must be able to access the
latest version of a requirement at any point in time.

It is also important that changes that have led to new versions of requirements are
communicated actively to all stakeholders at defined points in time [WiBe2013]. This
communication usually takes place at the time of the review, when change configurations (see
Section 5.1.2) are put together.

Note: The active communication to the project participants can also be performed by a

requirements management tool if, for example, you have defined beforehand who is to be

informed in the event of a change.

Implementing measures for version control

As the requirements manager, when you create the requirements management plan—that is,
before you document the first requirement—you must define how you want to implement a
version control for requirements and requirements documents in your project.

It is the requirements manager who decides the level (document level or requirement level)
at which version control is to take place, and this decision is dependent on the project scope.
The trend is that for complex projects with hundreds of requirements, version control should
take place at requirements level, even if this means that the effort involved is significantly
higher. However, this pays off over the duration of the project. Via the versioning at
requirement level, you can make sure that you are always talking about the same version of a
requirement over the course of the entire project. This means that you know which
requirement version was in which requirements configuration (e.g., for acceptance or for
development), and you can therefore discuss or distribute a specific version of a requirement
explicitly.

In addition to specifying the level at which versioning is to be performed and the information
that must be documented for new versions, in the requirements management plan, you must
also define who is permitted to perform changes and at what level.

In principle, only a limited group of persons should be authorized to make changes (see
[WiBe2013]). These roles and rights must be documented in a roles and rights matrix (e.g.,
RACI) (see also [Oran2013], RACI Model).

Change management limitation

Up to this point, we have discussed the implementation of a version control at different levels
to allow documentation and tracking of any changes at requirement level, for example. There
are many reasons for such changes.

We want to differentiate between two main points in time within a project when changes
occur:

▪ Changes that occur as part of requirements engineering up to their final acceptance or
release of the requirements specification

80 Version and Change Management

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 80/ 239

▪ Changes that occur after final acceptance or release of the requirements specification
and thus require a retrospective scope change

Changes of the first type can usually be considered directly and flow into the specification as
a new version of a requirement if they do not require a fundamental change to the project
scope. Changes of the second type must always be processed via a regulated change
management process.

5.1.2 Requirements Configurations

As part of the elicitation of requirements, at certain points in time you create requirements
configurations—for example, to allow the performance of a review at a defined and consistent
status of your requirements, or to obtain an estimation of the effort for the subsequent
development phases for the requirements configuration.

Definition 5-4: Requirements configuration according to [IREB2015]: "A requirements

configuration comprises a defined set of logically related requirements, whereby at most one

version of each requirement is contained in the requirements configuration."

A requirements configuration is therefore a specific set of requirements (requirements
artifacts) which is provided, for example, for review at a specific point in time and contains a
specific version of the requirements. The following definition also highlights the
communications aspect of configuration management so that all reviewers or users of the
version involved receive a standardized and consistent and contiguous requirement status.

Definition 5-5: Configuration management from [IEEE 29148]: "The purpose of the Configuration

Management Process is to establish and maintain the integrity of all identified outputs of a project

or process and make them available to concerned parties."

According to [PoRu2011], requirements configurations have the following properties:

▪ Logical connection: The selected requirements versions of a configuration are
connected logically and are selected for a specific purpose.

▪ Consistency: The combined requirements and requirements documents are consistent
and belong together logically.1

▪ Uniqueness: The configuration for the selected requirements versions has an identifier
that identifies it uniquely.

▪ Unchangeability: The configuration is based on a specific version status of the
requirements. Changes to these requirements versions lead to new versions that can be
used in new configurations.

▪ Basis for reset: Configurations offer defined statuses to allow requirements to be reset
to an older, consistent requirement status (version status).

1 In practice, configurations are often created that are not consistent in terms of content. Such configurations are
built out of the need to freeze the current work status in order to be able to access it later if necessary. For
example, a configuration can be created that documents the starting point of review activities.

Version and Change Management 81

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 81/ 239

Note: The creation of a requirements configuration can be considered, for example, as a consistent

requirements document, which is to be checked and accepted, with selected versions of

requirements artifacts for a planned project phase. Compared to the requirements baseline (see

the following section), the requirements configuration does not necessarily have to contain only

stable requirements artifacts. The focus here is more on the logical connection in a "requirements

composition" (i.e., a requirements configuration).

5.1.3 The Requirements Baseline

You should already be familiar with the term requirements baseline from the CPRE
Foundation Level. Baselines are generally a "frozen" documentation status which is created,
for example, when certain milestones (handover of a specification for cost evaluation) are
reached.

Definition 5-6: Requirements baseline: Requirements baselines are selected, formally checked,

and released requirements configurations that cover stable requirements artifacts and often

reflect a fixed development and delivery status for a product (e.g., for a specific product release).

Requirements baselines are therefore generally visible to the outside world, whereas simple
requirements configurations are used primarily for internal purposes (see [WiBe2013] and
[Pohl2010]).

Definition 5-7: Release management according to [BSB2008]: "Release management is concerned

with bundling requirements for a product, with the scheduling for the manufacture and,

ultimately, the delivery of a finished system. [...] For a release, all current configuration elements

are usually managed under one common label and the software is then created from the

configuration thus created."

The requirements configuration defined as the requirements baseline should contain only
requirements planned for a particular version of the product (e.g., release) and which are
stable, and not those that are only proposed or are still in progress or being discussed at this
point in time [WiBe2013]. Therefore, when selecting requirement versions for a requirements
baseline, pay attention to their status (see also Chapter 3).

Requirements baselines support three essential activities in the development process (see
[Pohl2010]):

▪ They form the basis for planning delivery increments (releases) because for the
customer, they represent a visible configuration of stable requirements versions.

▪ They are used to estimate the implementation costs of a particular release.

▪ They enable a comparison with competing products on the market with the defined
release.

A suitable point in time for creating a requirements baseline can be when a milestone is
reached: for example, the commissioning of the design of the architecture or the
implementation (see [WiBe2013]). Milestones for requirements baselines and for
configurations are generally specified by the project or the development process.

82 Version and Change Management

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 82/ 239

Figure 11 shows two example milestones: "For review" and "Creation of the architecture
design". For the first milestone, versions of requirements artifacts that have the status "In
evaluation" can also be used. In contrast, for the second milestone, only versions of
requirements artifacts that have the status "Released" should be used.

Note: In your requirements management plan, define the purpose for which requirements

baselines are to be created, who is permitted to create requirements baselines, and last but not

least, the criteria for selecting requirements artifacts for a requirements baseline.

Consider the requirements artifacts contained in the requirements baseline as an accepted
and commissioned specification. The requirements contained herein can only be adjusted via
a controlled change management process.

Figure 11: Possible milestones for requirements configurations and requirements baselines

5.1.4 Branching Requirements

The term branching originates from configuration management and allows the parallel
development of systems in different development branches. Branches are used, for example,
as part of fixed, scheduled releases to start the further development for the subsequent
release on one branch, while on the parallel "production branch" of the system that has
already been delivered, only bug fixing and minimal changes may be performed. The two
development branches are then generally merged again before the next main release so that,
for example, the errors that have already been corrected in the production branch do not find
their way back into production with the new release.

Version and Change Management 83

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 83/ 239

Even though the term branching originates from configuration management and is therefore
more closely associated with implementation, we also find this concept in requirements
management, as the branches in the requirements strands reflect the branches in the
development strands.

In contrast to versioning requirements, branching requirements allows multiple versions of
requirements to be valid in parallel simultaneously. The branching mechanism is used, for
example, to perform small and urgent changes in parallel with ongoing development.

To create a requirements branch, a valid requirements configuration (e.g., the last
requirements baseline) is selected that the new requirements branch should build on. This
configuration is copied to a new requirements branch, changed, versioned, and summarized
in a new requirements configuration. Think of a requirements branch as, for example, a copy
of a selected document version that can be worked on in parallel. The main point here is that
the same requirement may exist in two branches in parallel, and there is thus one valid version
of a requirements artifact for each branch.

Figure 12: Branching and merging of requirements configurations

Once the branched requirements configuration has been successfully implemented, at a later
point in time—generally before a new release—the two branches are merged again. From this
point on, there is again only one version of the respective requirements artifacts so that the
subsequent changes only have to be performed in one version, see the example in Figure 12.

In addition to refining and versioning requirements, requirements branching is an additional
dimension of the complexity of handling requirements in requirements management which
should be used sparingly and deliberately. Otherwise, the uncontrolled use of requirements
branches can lead to more chaos than benefit.

Problems that occur in connection with requirements branches include:

▪ Requirements branches make it more difficult to identify requirements uniquely

▪ In addition to versions and refinements, requirements branches increase the complexity
of requirements engineering and requirements management

▪ Requirements branches generate redundant requirements information which must be
maintained in parallel and then merged again in the long term

84 Version and Change Management

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 84/ 239

In individual cases, requirement versions that have arisen in requirements branches are
intentionally not merged again and both requirement versions are intended to exist
consecutively in parallel. In this case, however, we no longer refer to the same version in
different requirements branches, but rather to variants (see Chapter 7). These variants are
then managed with different requirement IDs so that the requirement variants can still be
identified uniquely.

Practical tip: Requirements branches increase the complexity of managing requirements not only

in requirements engineering and requirements management; in the subsequent phases of

software development, parallel developments lead to challenges as separate development and

test environments and teams must be available for every development branch. If software errors

cause delays in the commissioning of branches, this can affect the acceptance and commissioning

of subsequent releases. The number of requirements branches should therefore be kept low.

Companies often have a parallel development branch which is used for bug fixing and small

changes.

5.2 Change Management for Requirements

IEEE 29148 describes the nature of changes to requirements with the following words:
"Whatever the cause of requirements changes, it is important to recognize the inevitability of
change and adopt measures to mitigate the effects of change. Change has to be managed by
ensuring that proposed changes go through a defined impact evaluation, review, and approval
process, and by applying careful requirements tracing and version management. Hence, the
requirements engineering process is not merely a front-end task, but spans the life cycle. In a
typical project the activities of the requirements management evolve over time from
elicitation to change management.“ [ISO29148]

Note: Be ready for changes and schedule them. Establish a simple and effective change process.

The longer a project runs, the greater the probability of changes to your requirements. An

approximate reference value is 1-5% changes per month (see also [Eber2012], [WiBe2013]).

The planned handling of changes is therefore a significant task in requirements management.
What is important here is to accept that changes are the rule and not an exception.

With regard to changing requirements, we want to differentiate between two main times of
change as these are usually handled differently:

▪ Firstly, the evolution of the requirement up to its final acceptance or release for the
architecture design or the implementation. This is usually a time interval before the first
requirements baseline. As part of this phase for eliciting, analyzing, and negotiating
requirements, it is normal that changes are made to requirements without a separate
change management process. Note the rules for versioning.

Version and Change Management 85

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 85/ 239

▪ Secondly, the evolution of the requirement after the final acceptance or as part of the
creation of the design, implementation, or even during operation. These changes are also
normal and can be driven by external factors (e.g., changes in legislation) or internal
factors (e.g., new strategies). You should process these changes via a corresponding
change management process! This is because these changes are generally those that
were not estimated in advance either in terms of time or money and that have to be
reevaluated via an impact analysis.

Definition 5-8: Change management according to [BSB2008]: "Change management regulates the

further development of the product by monitoring in particular the change requests for the

product and the processing of these change requests. Change management monitors the lifecycle

of all change requests across the following steps: creation, evaluation, realization, testing, and

acceptance."

5.2.1 Causes, Sources, and Timing of Requirement Changes

There are many reasons for changes to requirements. Requirements for a (software) system
are subject to changes during the lifecycle of the (software) system. These changes can be
triggered by different persons or roles, from different development phases, and in different
project and lifecycle phases.

As a first step, it is helpful to know where changes to requirements originate and what the
causes and sources of changes to requirements are. [RuSo2009] differentiates between the
following sources for changes:

▪ Incident management (technical hotline for the systems): This is where malfunctions
triggered from technical system operation and by system users, and which have to be
rectified, appear. Changes can result from the analysis of these malfunctions.

▪ Department and product management: These groups of people generally create new
requirements for the system which improve the use of the system or reflect new facets
of the system.

▪ Developers: This group of people generally defines change requests relating to the
technical implementation of the system. These changes do not directly influence the user
functionality of a system.

▪ Testers: These people generally define changes aimed at rectifying errors that exist in
the system (due to faulty or incomplete requirements).

According to [Pohl2010], causes of requirement changes include:

▪ Errors in ongoing system operation: changes due to incorrect system behavior that
are reported as an incident by the user or application operation. These changes to
requirements result from incorrect or missing requirements, and not from an incorrect
implementation of the requirement.

▪ Context changes: changes that result from changes to constraints in the system context.
These changes can originate from all aspects of the context (usage aspect, object aspect,
IT system aspect, or the development aspect). These requirement changes result from a
changing world and are submitted via the department, product marketing, or
development.

86 Version and Change Management

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 86/ 239

The list above is not a complete list of causes of changes to requirements. It is intended

primarily to give you an insight into why changes occur, and for what reasons and from what

sources changes can originate. Therefore, think about which sources and reasons for changes

you can expect as early as possible.

Note: When analyzing any change to be executed, in addition to the change to the actual

requirement, you must also consider effects on directly and indirectly dependent requirements

and other development artifacts (see Chapter 1). Of course, as the requirements manager, you are

not directly responsible for the architecture design, the test, and the development, but when the

change takes place in "your" requirements, the other roles must be informed about these changes

so that the change can be evaluated in its entirety.

Changes can occur at different times during the entire project and lifecycle of a (software)
system, for example:

▪ During the elicitation of requirements: Adding a new requirement leads to an
adjustment to an existing requirement because the system context has changed.

▪ During the architecture design: An architecture decision for the system architecture
requires that a function previously covered by hardware is to be realized by means of
additional functionality in the software for cost reasons.

▪ During implementation: The implementation of a requirement demonstrates
performance problems which, in turn, can only be resolved by adjusting the actual
requirement.

▪ During the software test: A test result shows that a requirement has not been
implemented in accordance with the specification but the implementation offers a better
solution which is to be retained. In this case, the requirement must be updated
accordingly.

▪ During the acceptance test: During acceptance, you establish that the customer does
not accept the delivery because he envisioned a different implementation of the
requirements but did not document this sufficiently. The requirements must be made
more specific and the corresponding development artifacts must be revised.

▪ During system operation: When software is used, it can become clear that
functionality that has been implemented has gaps for the processing of the business
process and therefore, new requirements must be elicited and existing requirements
changed.

The dimensions of the requirement changes (different sources, different causes, and different
times) make change management a complex task that cannot be performed ad-hoc and on
demand. Instead, a dedicated change management process is required (see Section 0).

5.2.2 Types of Changes to Requirements

As you can imagine, and have almost certainly experienced in your own life, no two changes
are identical. If, for example, you ordered your car with an automatic transmission, but on
delivery you discover that the car has a manual transmission, this results in a complaint (or in
other words: a change request).

Version and Change Management 87

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 87/ 239

However, for you—and for the vehicle supplier—this type of change has a different
significance to a change that you request 6 weeks after your order, namely that instead of
"silver gray metallic" for your exterior finish, you would prefer to have "space gray metallic".

For change management, when handling changes, you should know what types of change exist
so that you can develop a strategy for handling different types of changes. In the CPRE
Foundation Level [IREB2015], the following classification of changes is proposed:

▪ Corrective changes: A change is corrective if it can be attributed to incorrect behavior
during operation or of the product delivered, and the cause of the errors lies in the
requirements.

▪ Adaptive changes: A change is adaptive if it can be attributed to new constraints,
findings, or a context change. This type of change usually originates outside the project
(e.g., legislation).

▪ Exceptional changes: A change is an exceptional change if it can be attributed to
damaging behavior or would lead to damaging behavior. This type of change must be
implemented as quickly as possible to limit the damage. It can be both corrective and
adaptive.

To implement a change to a requirement, change requests must be submitted. These are then
evaluated and processed by a change management process (see Section 5.2). Amongst other
things, a change request covers the desired changes to the content of existing requirements
(i.e., to the current requirements baseline).

Note: Not every change leads to an adjustment to the requirements. For example, software errors

do not lead to a change to the actual requirements; instead, they lead exclusively to a change or

correction of the implementation with reference to the (correct) requirements. From a customer

perspective, the example of the incorrect type of transmission can clearly be classified as a "bug",

as the customer's requirement (automatic transmission) was clearly documented.

These changes can be characterized as follows:

▪ The change requires the integration of a new requirement (usually a scope
enhancement).

▪ The change requires the deletion of an existing requirement (usually a scope
reduction).

▪ The change requires a change to an existing requirement, by means of addition,
reduction, or a change to the content (scope change).

88 Version and Change Management

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 88/ 239

For your change management process (see Section 0), note that there are different types of
changes that can require changes in "your" requirements. Define which change requests you
want to discuss in your project cycle, who is permitted to submit these change requests, and
what the request must look like. For example, as a corrective change, a change request to
rectify a defect can look different to a change request for an innovation (that is, an adaptive
change).

For his project, Peter Reber defines the types of changes he wishes to discuss
in the project, what he understands under those types of changes, and who is
permitted to submit these change requests and in what form. To do so, Peter
uses the above-mentioned classification, although he uses different
designations which have become established in the company.

Spec. error: A "spec. error" is a corrective change and describes an error in the
product which can be attributed to an incorrect description in the requirement
specification. These changes must be channeled exclusively via the IT Service
Desk and are reported as a change request via the ticket system.

Scope change: A "scope change" is an adaptive change and describes new
requirements for the system from a user, company, or legal perspective. These
changes are usually submitted via product marketing and must be
documented via the template for change requests.

Tuning request: A "tuning request is an adaptive change and describes new
technological requirements for the system to improve operability. These
changes are generally submitted via the IT department and must be
documented using the template for IT change requests.

5.2.3 Analyzing and Documenting the Stability of Requirements

To move forward in a project, you have to finalize your requirements within a specified time
frame so that you can complete your project on time, within budget, and in quality. To enable
the client to see results and profit from their investment as quickly as possible, a phased or
release-based approach is often selected in which the desired product is taken into production
in stages. To do this, however, you have to know which requirements have already been
agreed and are stable so that you can hand them over to development (see Figure 11 in Section
5.1.3).

For this selection, requirements should be classified with regard to their stability, and thus
with regard to the probability of the current version of the requirement being changed. On the
one hand, this type of classification for selecting requirements for a specific phase can be done
solely by evaluating the stability (see Chapter 3), or alternatively, a corresponding
prioritization technique (see Chapter 4) can be used which, in addition to the stability,
includes other aspects—such as the expected benefits from the requirement—in the
evaluation. The stability of the requirement should always be considered in the evaluation
when selecting requirements for a target release because the stability is relevant, amongst
other things, for estimating the risk of releasing a selected requirements configuration
(requirements baseline) for implementation.

Version and Change Management 89

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 89/ 239

Practical tip: As mentioned at the beginning, a change rate of 1–5% per month can be expected

after the phase of eliciting and documenting requirements. This means that if you have 1,000

project requirements, it is not uncommon for 20 requirements to change per month. If more than

10% of the requirements in your project change per month after the requirements have been

released, together with the client, you should think seriously about the project goal to avoid a

creeping scope extension.

At this point, you will justifiably ask how you can select a requirements configuration or how

you can establish that a set of requirements (requirements configuration) has progressed so

far that a requirements baseline can be created and handed over to development without the

first changes to these requirements being submitted just a short time later. The answer is that

nobody can predict this precisely.

However, even if you are not psychic, you can make a statement about the probability of
changes to your requirements. The following rules (heuristics) will help you to evaluate the
probability of changes to requirement groups in a short time with limited knowledge and
incomplete information (see [VanL2009]):

▪ Requirement groups that serve the same goal and are generally highly stable (measured
by the frequency of changes) have a lower likelihood of change than individual
requirements.

▪ Goals are generally more stable than solution-oriented requirements.

▪ Functional requirements that meet the core goals are generally more stable than quality
requirements.

▪ Functional requirements that repeatedly appear in the set of requirements (as
amalgamations, extensions, or variants) are usually considered as stable requirements.

▪ Requirements describing alternative choices should be handled with particular caution
and are generally less stable than the above, as decisions are often based on incomplete
knowledge and assumptions.

▪ Requirements that are assigned to a variant or enhancement of the system are more
stable than requirements that have not yet been assigned.

▪ Requirements that were frequently changed until very recently are unlikely to be stable.

Define, therefore, for yourself and for your team, the criteria according to which requirements
baselines are to be created: that is, which requirements may flow into a requirements baseline
(in the sense of defined evaluation criteria). Make sure that corresponding attributes for
documenting the requirement status, the stability, the urgency, etc. are created at an early
stage (see Chapter 3) and in particular that they are maintained so that at any point in time,
you can select the correct requirements for stable requirements baselines.

90 Version and Change Management

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 90/ 239

5.3 Change Management Process

According to ITIL, change management ensures that changes are implemented within the IT
infrastructure in a controlled manner. "The purpose of change management is to 'control the
lifecycle of all changes, enabling beneficial changes to be made with minimum disruption to
IT services'...by following a well-defined...process" within the organization [Oran2013].

The change management process achieves this by defining activities, responsibilities, and
necessary artifacts that describe a clear procedure for handling change requests for
requirements.

In most change management processes, the Change Control Board (CCB) plays an important
role in the change process. In ITIL, it is called the CAB = Change Advisory Board. [WiBe2013]
describes the Change Control Board (change committee) as a group of persons with different
interests (e.g., project manager, developers, testers, IT department, Help desk) which, for
every change request, decides whether and when it should be implemented.

The CCB decides whether, based on the impact analysis conducted, a change request is
accepted, rejected, or postponed (see [WiBe2013]). The aim is to identify the effect that a
change has on all directly and indirectly affected systems and processes.

The IT of the example bank where Peter Reber is employed works according
to a company-specific project process. Therefore, Peter has a good basis for
establishing a change management process and for defining interfaces to
supplying and implementing processes.

In the following model, Peter has outlined the interfaces to Change
Management. In the illustration, we can see that problems that are identified
by customers and in the IT department are first evaluated by Problem
Management before a change request is submitted. The change management
process itself is implemented by the Change Control Board (CCB). Members
of the CCB include the project manager, user and IT representatives, and
Peter Reber as the requirements manager. Change Management receives
change requests from the departments (e.g., product marketing, the legal
department) as well as from Problem Management. Changes that are
accepted and implemented by the CCB are handed over to Release and
Deployment Management as implementation requests. Peter Reber's task is
to obtain all the required information from the experts before the CCB
meeting—for example, a cost evaluation, the importance of the change,
effects on usability and security.

Version and Change Management 91

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 91/ 239

Figure 13: Example interfaces to Change Management

In the following we will concentrate on the change process itself. To ensure that you can
integrate changes purposefully, plan a simple and efficient change process for your project.
[WiBe2013] provides a few useful tips in this regard:

▪ Define the goal of the change management process.

▪ Define the roles and responsibilities in the change management process.

▪ Define the input criteria for change requests.

▪ Define the unique statuses and status transitions that a change request can progress
through.

▪ Define a "lean" change management process.

▪ Define output criteria for the process.

▪ Define how changes are to be reported.

Proposals for change management processes can be found in the CPRE Foundation Level and
in many other literature sources: [PoRu2011], [PMI2013], [VanL2009], [WiBe2013].

Due to the wide variety of properties and differences in processes, there is no one unique
answer as to which process is most suitable for your project. Above all, the process you select
must fit with the processes executed in the company and must be accepted. However, there is
no fundamental difference in the basic activities of a change management process.

92 Version and Change Management

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 92/ 239

The trigger for change management is always the receipt of a change request (for further
details about the change request, see Section 5.3.1). The main activities of a change
management process can be summarized as follows:

▪ Step 1: Preparing the change request

▪ Step 2: Formal check of the request: This checks whether the change request meets
the defined input criteria.

▪ Step 3: Classification of the change request: Classifying a change request involves
determining whether the change is a corrective, adaptive, or exceptional change. The
requirements manager is involved in the evaluation to determine the cause of a change.

▪ Step 4: Impact analysis for the change: The goal of the impact analysis is to estimate
and document the consequences of changes. These consequences must be evaluated not
only for other requirements, but also for other artifacts (architecture, source code, test
cases, training materials). Use the documented traceability information for this
evaluation (see Chapter 6). The goal is to determine the required adjustment effort for
the changes requested.

▪ Step 5: Decision about the implementation of the change request: The results of the
impact analysis are used by the Change Control Board to determine whether to approve
or reject the change request. It is not always reasonable to accept and implement a
change request. Reasons for a possible rejection of a change request are, for example:

o The change is too costly and is not justified in relation to the effort required for
its implementation or its expected benefit.

o The desired change contradicts other requirements.

o Implementation of the change would lead to too high a risk with regard to the
stability of the (software) system under consideration.

o The change is not covered by a contract.

For reasons of traceability and of achieving agreement among the stakeholders involved,
it is essential to document the decisions of the Change Control Board.

▪ Step 6: Prioritization of the change requests: The change requests accepted are
prioritized by the Change Control Board (e.g., according to cost and benefit for adaptive
changes, or frequency and effect of the error for corrective changes) (see also Chapter
4).

▪ Step 7: Scheduling of the change requests for implementation: Accepted change
requests are scheduled for implementation, for example, via a project, release, etc., and
are then implemented.

The actual change begins after the change management process. It is implemented either via
an ongoing project or a new project. The responsibility for implementation generally lies with
Change Management.

For requirements management, at this point it is relevant that the required changes to the
requirements artifacts are performed carefully and, after the change, the requirements
specification is in a consistent state again.

Version and Change Management 93

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 93/ 239

To perform the change, use the existing traceability to identify all artifacts to be changed.
When changing the requirements artifacts, remember that for the changed requirements, you
have to:

▪ Create a new version (e.g., V07, on 08/12/2014)

▪ Update the status of the new requirement version (e.g., deleted or changed)

▪ Document the type of change (e.g., corrective change)

▪ Document the reason for the change (e.g., requirement obsolete due to CR-1287)

▪ Update the existing traceability relationships

Note: You should also create evidence of what was changed and why, so that any other person

can trace why a change was performed and which changes a specific change request led to.

Consider the change request as a new artifact and create new traceability relationships between

the change request and the changed requirements artifacts.

5.3.1 The Change Request

Change requirements and requirements changes are described by a change request (CR). As
part of your requirements management plan, you should define a template for a change
request. An example of a template for a change request is shown in Table 6. Depending on the
company and the project, however, complete document templates may also be used.
Regardless of the form, make sure that the template contains all attributes relevant for the
change request. You can use the attributes proposed for a change request in Table 6 as a basis.

Contents Description

Project name Designation of the project that the requested change applies to

Request number Sequential number of change requests within a project

Title Title of the desired change

Date Date of the change request

Requester Name of the requester

Origin Source or origin of the change (e.g., marketing, management, customer, test)

Functional responsibility Name or department with functional responsibility for the original
functionality

Change type Type of change request (e.g., defect, innovation, tuning)

Status Current status of the change request (e.g., evaluated, accepted, rejected)

Requester's priority Priority of the change from the perspective of the requester

Implementation priority Priority of the change from the perspective of the change committee

Tester of the change
request

Name of the person who tests the execution of the change (including effects)

94 Version and Change Management

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 94/ 239

Contents Description

Tester of the change
request

Update date Date of the last update to the change request

Version Version number of the change document

Release Assignment of the release for which the change is to be implemented

Specification effort Forecast specification effort for the change

Implementation effort Forecast implementation effort for the change

Description of the change Description of the change(s) to be executed

Comments Comments about the change request

Table 6: Attributes for a change request (based on [Pohl2010])

5.4 Content for the Requirements Management Plan

In your requirements management plan, document how you want to version requirements
and documents in your project. Define the statuses that a requirement may take, how the
status transitions are to take place, and who is permitted to change the status of requirements
artifacts (see Figure 9). In addition, define the basis for creating a requirements baseline and
what the creation of such a baseline means for the subsequent requirements management
process—for example, following a requirements baseline, changes are accepted only via a
change management process. In the requirements management plan, define how you want to
handle changes in the project, how changes are to be documented, whether there is a change
committee, who makes up this change committee, etc.

You can use the requirements management plan to explicitly inform all stakeholders about
the planned methodological procedure to ensure that the process you have worked out is
actually put into practice. A requirements management plan also gives participants who join
the project at a later date the opportunity to become acquainted with the organizational and
methodological processes.

Version and Change Management 95

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 95/ 239

5.5 Literature for Further Reading

[Eber2012] C. Ebert: Systematisches Requirements Engineering. Dpunkt, 4th edition, 2012
(available in German only).

[Pohl2010] K. Pohl: Requirements Engineering – Fundamentals, Principles, Techniques.
Springer, 2010.

[RuSo2009] C. Rupp & die SOPHISTen: Requirements-Engineering und –Management, Hanser,
5th edition, updated and extended, 2009. Chapter 15 (available in German only).

[VanL2009] A. van Lamsweerde: Requirements Engineering – from System Goals to UML
Models to Software Specifications. John Wiley and Sons, 2009.

[WiBe2013] K. Wiegers and J. Beatty: Software Requirements, 3rd Edition. Microsoft Press,
2013.

[BSB2008] Christoph Bommer, Markus Spindler, Volkert Barr: Softwarewartung -
Grundlagen, Management und Wartungstechniken. Dpunkt.verlag, 2008 (available in German
only).

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 96/ 239

6 Requirements Traceability

"The overall objective of traceability management is to support consistency maintenance in the
presence of changes, by ensuring that the impact of changes is easily localizable for change
evaluation and propagation." [VanL2009]

6.1 Reasons for Requirements Traceability

As you have already learned in the Foundation Level CPRE [IREB2015], traceability is very
important for requirements management. Amongst other things, implementing traceability
enables the following:

▪ Recognition of dependencies between requirements artifacts

▪ Recognition of dependencies between requirements artifacts and other development
and quality assurance artifacts

▪ Provision of evidence of the implementation and quality assurance of a requirement

▪ Analysis and performance of required changes as part of change management

Implementing traceability essentially means maintaining references or links to document
relationships between different requirements artifacts as well as relationships with
predecessor (e.g., business goals) and successor artifacts (e.g., test cases).

Before we continue, let us take a brief look at the different terms used for requirements
traceability in the underlying professional literature. Literature contains different terms for
"traceability": verifiability, traceability, requirements traceability, etc. In this learning unit, we
use the term traceability unless we refer to a specific reference in literature.

6.1.1 What Does Requirements Traceability Mean?

Definition 6-1: Traceability according to the IREB: Traceability is the ability to trace a requirement
(1) back to its origin (stakeholders, documents, justifications, etc.), (2) forwards up to the
architecture design and code artifacts, as well as (3) to other requirements that this requirement
is dependent on.

As the definition above already states, traceability refers to the ability to trace the
dependencies between requirements as well as the dependency of requirements on
predecessor and successor artifacts. The following definition also explicitly addresses the
traceability of a requirements artifact or development artifact over its entire development
cycle or lifecycle.

Definition 6-2: Traceability according to [RuSo2009]: "Traceability is the ability to trace

connections and dependencies between information that arise during the development, creation,

maintenance, and further development of a system at any time."

Requirements Traceability 97

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 97/ 239

When we refer to requirements traceability in the following, we are referring to the ability to
trace the dependencies between requirements as well as the dependency of requirements on
predecessor and successor artifacts over their entire development cycle or lifecycle using
documented traceability relationships.

6.1.2 Why Traceability between Requirements and Other
Development Artifacts Is Important

Traceability of requirements is not usually a project goal, but rather a means to an end. A
number of reasons motivating traceability between artifacts can be found in literature, see
[HJD2011], [IREB2015], [WiBe2013], [VanL2009]:

▪ Demonstrability of how goals and requirements are to be achieved

▪ Verifiability as to why, if and how a requirement was implemented

▪ Identification of unnecessary requirements and properties of the system (gold plated
solutions)

▪ Identification of missing artifacts (e.g. missing test cases)

▪ Simplification of assignment of development efforts to requirements

▪ Support for reusability of artifacts

▪ Support for maintenance, admnistration and further development of systems

Requirements traceability helps to answer important questions in the everyday life of a
project: for example, what effect changing certain requirements has, the level of
implementation effort expected, or how a requirement was implemented or tested.

As the requirements manager, traceability supports you in particular with the following four
analyses (see [HJD2011], [PMI2013]):

▪ Impact analysis: analysis of which artifacts are affected by a change (reduction or
extension of scope) (see Change Management)

▪ Source analysis: analysis of why a certain artifact (e.g., requirement) exists in order to
identify and avoid unnecessary requirements, for example

▪ Coverage analysis: analysis of whether all requirements and subsequent development
artifacts have been considered so that the desired product can be completely recorded,
developed, and tested

▪ Earned value analysis: analysis to determine work progress (performance value), in
order to compare this against the original project plan and, if necessary, take
appropriate action (see also Chapter 8)

98 Requirements Traceability

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 98/ 239

Furthermore, traceability between requirements and other artifacts (e.g., business processes,
legal texts, test cases) is essential to meet certain maturity levels for reference models (e.g.,
CMMI), standards/guidelines (e.g., ISO 12207), or legal regulations (e.g., SOX).

6.2 Different Traceability Views

[VanL2009] describes traceability as follows: "...traceability relies on the existence of links
between items that we can follow backwards, towards source items, and forwards, towards
target items…"—that is, the ability to navigate between predecessor and successor artifacts.

[GoFi1994] differentiates traceability from the perspective of the requirements specification
as follows:

▪ Pre-requirements specification traceability is the traceability of requirements to
their origin, for example to the upstream goals and visions or other sources of
requirements from the system context, such as a reference to existing business rules or
stakeholders.

▪ Post-requirements specification traceability is the traceability of requirements to
successor development artifacts such as system architecture components, code
fragments, test cases.

Figure 14: Extended pre- and post-requirements specification traceability

Requirements Traceability 99

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 99/ 239

[Pohl2010] shows the extended view of the pre- and post-requirements specification
traceability, with the additional traceability between requirements artifacts (e.g., logical
dependencies between two functional requirements), referring to this as the extended pre-
and post-requirements specification traceability.

Figure 14 illustrates the extended pre- and post-requirements specification traceability. The
extension focuses on the traceability between the requirements artifacts.

In Section 2.1.3, we discussed that in practice, requirements are closely linked to architecture
decisions (twin peaks model). We recommended that to document your requirements in a
structured way, you should introduce different levels of detail. In principle, this aspect is also
addressed by traceability between requirements, although here there is no explicit
differentiation between, for example, logical relationships between requirements at one level,
or a detailing at a deeper level. However, we want to explicitly include this differentiation in
our examination.

From this point on, in our examination of requirements traceability, we differentiate between
the following dimensions of traceability:

▪ Traceability between requirements at the same level of detail: This type of
traceability describes, for example, content-related dependencies between functional
requirements.

▪ Traceability between requirements at different levels of detail: This type of
traceability describes, for example, the detailing of legal requirements for system
requirements (see Section 2.1.3).

▪ Traceability between versions of requirements: This type describes the traceability
of the evolution of a requirement over time. A special feature of this view is that there is
only one valid version at a given time.

▪ Forwards traceability from requirements to downstream development artifacts:
This type of traceability describes, for example, dependencies that document the
implementation/realization of a requirement up to the system component or test case.

▪ Backwards traceability between requirements and upstream artifacts: This type
of traceability describes the justification or source of a requirement.

6.3 Relationship Types for Traceability Relationships

"Traceability links are thus aimed at localizing items, their origin, rationale and impact. To
enable item tracing, such links must be made explicit and documented." [VanL2009]

This excerpt from [VanL2009] states that traceability relationships between artifacts that are
dependent on one another must be documented explicitly so that these dependencies can be
traced at a later point in time.

[VanL2009] also describes the basic principle of traceability as follows: "In a production chain,
an item is traceable if we can fully figure out where the item comes from, why it comes from
there, and where it goes to – that is, what it will be used for and how it will be used“.

To enable requirements artifacts to be traced back to their origin and to their successor
development artifacts, and for the traceability relationships to clearly indicate why this
dependency exists, different types of traceability relationships are required.

100 Requirements Traceability

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 100/ 239

Of course, traceability relationships could be described in principle by one single relationship
type: for example, "dependent_on".
However, in this case, the actual reason for the relationship would not be clear from the use
of the documented traceability relationships, which means: does this traceability relationship
express that there is a logical dependency between two requirements, does it express that a
requirement is detailed by another requirement, or does it even express that two
requirements exclude each other because they are different variants? The background to the
traceability relationship is missing. This background makes a subsequent use of the
documented traceability relationships valuable for impact analyses, for example.

Here, [VanL2009] states: "The more specialized the dependency, the more specific the reason
for it, the more accurate the link, the easier its correct establishment and the more accurate its
analysis for multiple uses in traceability management.“ Where traceability relationships are
used and defined, however, there is no uniform definition or recommendation for the use of
relationship types in literature.

6.3.1 Classes of Relationship Types for Traceability

[Pohl2010] forms five classes of relationship types for documenting traceability and these can
be used dependent on the traceability goal:

Condition: The class "condition" groups traceability relationships to describe content-
related dependencies between two artifacts. This class includes the following relationship
types, for example:

▪ Limitation: This relationship expresses that there is a limitation between a source
artifact and a target artifact.

▪ Precondition: This relationship expresses that a source artifact is a precondition for a
target artifact; that is, one requirement is the precondition for the fulfillment of the
other.

Content: The class "content" groups traceability relationships that describe content-based
comparisons between two artifacts. This class includes the following relationship types, for
example:

▪ Equality: This relationship expresses that a source artifact and a target artifact are
identical from a content perspective.

▪ Contradiction: This relationship expresses that a source artifact and target artifact
contradict one another, which leads to a logical or content-based inconsistency.

▪ Conflict: This relationship expresses that a source artifact is in conflict with a target
artifact. However, this conflict does not necessarily lead to a contradiction; it merely
hinders the realization of the target artifact.

Documentation: The class "Documentation" groups traceability relationships that provide
further information about an artifact. This class includes the following relationship types, for
example:

▪ Example_for: This relationship expresses that a source artifact represents an example
for a target artifact—for example, a scenario for a solution-based requirement.

▪ Test_case_for: This relationship expresses that a source artifact is a test case for a target
artifact—for example, a test case for a solution-based requirement.

Requirements Traceability 101

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 101/ 239

▪ Responsible_for: This relationship expresses that the person or the role of a source
artifact is responsible for a target artifact—for example, the role "Customer support" is
responsible for the scenario "Cancel account".

▪ Background: This relationship expresses that a source artifact provides background
information for a target artifact—for example, a company guideline for security
requirements provides the background for the requirement for customer
authentication.

Abstraction: The class "abstraction" groups traceability relationships that describe
abstraction relationships between two artifacts. This class includes the following relationship
types, for example:

▪ Classification: This relationship expresses that a source artifact provides a classification
for a target artifact—for example, the scenario "Retrieve account balance" belongs to the
class of administrative scenarios.

▪ Aggregation: This relationship expresses that a source artifact provides an aggregation
across multiple target artifacts—for example, the scenario "Authenticate customer" is
an aggregation of "Customer login" and "Mobile TAN".

▪ Generalization: This relationship expresses that a source artifact provides a
generalization for a target artifact—for example, the scenarios "Retrieve postings for the
last 30 days" and "Retrieve postings for the period" are grouped under "Retrieve
postings".

Evolution: The class "Evolution" groups traceability relationships that describe the way in
which a requirement is further developed (e.g., fulfilled, refined, replaced, extended). This
class includes the following relationship types, for example:

▪ Is_the_basis_for: This relationship expresses that a source artifact has provided a basis
for a target artifact—for example, the use of cell phones is the basis for the quality
requirement "Use of a mobile TAN procedure".

▪ Formalizes: This relationship expresses that a source artifact provides a formalization
for a target artifact—for example, an activity diagram formalizes a textual scenario
description.

▪ Refines: This relationship expresses that a source artifact refines a target artifact—for
example, a functional requirement "Customer must be authorized with a valid
password" is refined by a quality requirement "A valid password must be alphanumeric
and must contain 8–20 characters".

Unfortunately, there is no one single answer to the question of which of these or other
relationship types that exist in professional literature are actually useful and necessary for
your development project. What is important for your requirements management plan,
however, (that is, for the planning for your requirements engineering process) is that
traceability relationship types are selected and used according to the traceability goal (see
Section 6.1).

102 Requirements Traceability

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 102/ 239

Tip: Do not be misled into using all possible relationship types from literature. Keep the number
of different types as low as possible to achieve your traceability goal. A large number of
relationship types may allow the greatest possible flexibility and accuracy, but also requires a much
higher effort. What is important is that before you start requirements specification, you define the
relationship types to be used in your project.

The traceability dimensions introduced in Section 6.2 can be one means of support when
selecting the relevant relationship types for your traceability goal. For example, if you only
need to prove how a requirement is implemented and tested, considering traceability
relationships for documenting forwards traceability of requirements artifacts to
downstream development artifacts is sufficient.

6.3.2 Dimensions and Relationship Types

In this section, we use a couple of example assignments to show which relationship types can
be used for which traceability dimensions. In the examples, all relationship types are specified
from the perspective of the requirements artifact.

Types of traceability relationships for documenting forwards traceability of
requirements artifacts to downstream development artifacts.

▪ Is_tested_by: This type documents that a requirements artifact is verified by a specific
test case. This relationship is generally maintained by the test manager who creates the
test case.

▪ Is_realized_by: This type documents that a requirement is realized or reflected by a
specific software component or system component. This relationship is generally
maintained by the system architect who creates the architecture design artifact.

▪ Is_implemented_by: This type documents that a requirement is implemented, for
example, by a specific function, class, component, etc. This relationship is generally
maintained by the developer.

Types of traceability relationships for documenting backwards traceability of
requirements artifacts and upstream development artifacts.

▪ Fulfills: This type documents that a requirement contributes to the fulfillment of an
upstream artifact (e.g., a business process). This relationship is generally created by the
requirements engineer.

▪ Excludes: This type documents that a requirement excludes the fulfillment of an
upstream artifact (e.g., business goal). This relationship is generally created by the
requirements engineer.

▪ Is_in_conflict_with: This type documents that a requirement is in conflict with an
upstream artifact (e.g., a legal requirement). Here, conflict means that the
implementation of the system requirement restricts, but does not exclude, the
fulfillment of the legal requirement. This relationship is generally created by the
requirements engineer.

▪ Is_explained_by: This type documents that there is additional background information
for a requirement that is not contained within the requirement itself. This relationship
is generally created by the requirements engineer (e.g., from a user requirement for a
statutory requirement for handling SEPA mandates).

Requirements Traceability 103

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 103/ 239

Types of traceability relationships for documenting traceability between requirements
artifacts at one level of detail.

▪ Is_dependent_on: This type documents that a requirement is dependent on the
fulfillment of another requirement from a technical, logical, or content perspective (e.g.,
relationship between a requirement for the creation of a bank transfer and the
requirement for the visual representation of the process).

▪ Is_an_example_for: This type documents that a requirement represents an example for
another requirement. This relationship type can be used, for example, to describe a
relationship between a solution-based functional requirement or a quality requirement
and a descriptive scenario or mock-up.

▪ Is_in_conflict_with: This type documents that two requirements are in conflict with one
another and the implementation of one requirement restricts, but does not exclude, the
fulfillment of the other requirement. It allows the derivation of limitations that have to
be described as part of a project.

▪ Contradicts: This type documents that two requirements are contradictory from a
content perspective and therefore exclude each other in a consistent solution. These
requirements can actually both be required because they are to be implemented in
different products. If both are not required, this relationship indicates contradictions
that must be resolved.

▪ Is_a_variant_for: This type documents that a requirement is a variant of another
requirement which, for example, is to be evaluated as an alternative solution variant.
(Note: An alternative is the explicit modeling of variability via feature modeling, see
Section 7.3.)

Types of traceability relationships for documenting traceability between requirements
artifacts at different levels of detail.

▪ Formalizes: This type documents that a mathematical description formalizes an informal
requirement (e.g., textual business rule). This can also be the formalization between a
scenario description in prose form and a template-based use case description. Details
on modeling requirements can be found in the IREB Certified Professional for
Requirements Engineering Advanced Level “Requirements Modeling” [CHQW2022].

▪ Details: This type documents that one or more requirements at a lower level of detail
(e.g., system requirement) extends (details) a requirement at a higher level of detail (e.g.,
user requirement) to the extent that all relevant aspects for implementation have been
described.

104 Requirements Traceability

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 104/ 239

6.4 Forms of Presentation for Traceability Relationships

To document or implement traceability, traceability relationships are used to document
relationships between artifacts (e.g., requirement is tested by test case or textual
requirement is formalized by requirements model).

The goal to be achieved with the traceability defines the artifacts between which traceability
is to be documented and the types of traceability relationships to be used. Depending on the
traceability goal, not every one of the above-mentioned traceability dimensions has to be
considered. For example, if traceability is used to ensure that all business requirements in a
project have been covered by system requirements, or that a system requirement serves at
least one business requirement, then a simple bidirectional traceability relationship of the
type "is implemented by" between these artifacts may be sufficient. However, if traceability
has to be realized according to a specific security standard (e.g., in the aerospace sector), a
consistent traceability from the origin of the requirement right up to code artifacts and test
artifacts may be required, for example.

6.4.1 Implicit and Explicit Documentation of Traceability

Traceability can be documented implicitly or explicitly.

▪ Implicit documentation of traceability: Implicit traceability can be achieved, for
example, through naming conventions, document structures, glossaries, references, etc.

▪ Explicit documentation of traceability: Explicit traceability is achieved through
defined and deliberately established traceability relationships between artifacts that are
dependent on one another (see Section 6.4.3).

Implicit traceability is understood as the ability to recognize relationships between
requirements and to predecessor and successor artifacts via structural or stylistic
conventions.

Implicit traceability can be achieved through identical document structures (e.g., in the
customer requirements/system requirements specification and test concept). For example, a
structuring according to the user-centered functionality across the customer
requirements/system requirements specification and test concept will allow you at least to
see, across different development phases, how a set of requirements (for a functionality) from
the customer requirements specification is implemented and how the quality is assured.

Within a specification, just like inside a book, relationships (and dependencies) to previous
and subsequent chapters, definitions, illustrations, etc. can be described.

This means that you can also enable traceability at least at a low granular level within a
specification. For example, within a specification, references from user requirements to
quality requirements or to requirements for the user interface can be documented.

Furthermore, if identical terms (or process verbs) are defined by means of a glossary and used
consistently, in addition to the reference to a chapter, you can also find the corresponding
place in the specification that is actually being referenced.

Nevertheless, implicit traceability documentation is not a sufficient approach for enabling
requirements traceability in the sense of our understanding (see Section 6.1.1).

Requirements Traceability 105

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 105/ 239

Therefore, we see the structuring (and thus the implicit documentation) not as a replacement
for documenting traceability, but rather as a supplement to enable traceability within and
between different specifications for the reader of these documents.

However, explicit documentation of traceability is also no substitute for a well-structured,
legible, and understandable requirements specification. In fact, we would go so far as to say
that an understandable structure must never be omitted for the explicit documentation of
traceability. Ultimately, a specification is intended to be read and understood by humans! In
contrast, traceability is more of a means to an end, for example, to provide evidence of
implementation or to analyze the effect of changes (see Section 6.1.2).

6.4.2 Bidirectional and Unidirectional Traceability Relationships

When implementing traceability relationships, we can differentiate between unidirectional
(directed) and bidirectional (not directed) relationship types.

▪ Unidirectional traceability relationships: allow traceability from one artifact to
another, but not vice versa. For example, the reference from a test requirement to a
system requirement allows you to check why the test requirement exists or what it
depends on. However, no unique reference from the system requirement to a test
requirement will be found. This type of relationship is often found in document-based
techniques, where relationships are maintained manually, for example by means of
textual references, and refer to either the predecessor or successor artifact. With regard
to the documentation direction, it is important to note that reference is made to the
artifact to which a dependency exists.

▪ Bidirectional traceability relationships: allow traceability from one artifact to
another and vice versa. Unlike the unidirectional relationship, here you can navigate
between the artifacts, for example from a requirement to a test case (for example,
through a textual reference to a test case) and vice versa, from a test case to the
corresponding requirement that is to be checked with this test case. This type of
relationship allows you to consider the predecessor and successor artifacts (pre- and
post-requirements specification traceability). In requirements management tools,
bidirectional relationships are usually created automatically as soon as a traceability
relationship is created. The tool thus supports navigation or impact analysis in both
directions. For purely textual references, however, explicit maintenance is required for
each artifact involved.

Note: In practice, however, and particularly with document-based specifications, we often
encounter unidirectional traceability relationships in which, for example, a system requirement
refers exclusively to a business requirement, but the business requirement has no reference to the
successor artifacts.

6.4.3 Forms of Presentation for Traceability Relationships

A certain amount of effort must be calculated into the project for documenting traceability
(making it usable). This effort is dependent on the traceability goal (forwards/backwards
traceability, traceability between requirements artifacts), on the number of relationship types
to be considered (see Section 6.3), on the number of requirements in the project, and last but
not least, on the form of presentation selected.

106 Requirements Traceability

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 106/ 239

There are various forms of presentation for documenting traceability. In this section, we
present the most common forms, see [Pohl2010], [RuSo2009], [VanL2009].

6.4.3.1 Textual references

Documenting textual references is the easiest way to implement traceability relationships
between artifacts. The relationship describes the relationship type and a unique ID of the
artifact to which the relationship refers (e.g., [TC_0021 tests --> FR_3131]). This type of
presentation has the decisive advantage that it can be used independently of a requirements
management tool and is easy to understand. It is usually documented directly in an artifact,
meaning that in a test case, for example, there is a reference to the requirement.

The documentation can be implemented either in the requirement text itself (Figure 15) or
using attributes intended for this purpose (e.g., "Reference to Test Case" and "Reference to
Requirement"), see Figure 16.

Figure 15: Traceability by means of textual references in the requirement text

Figure 16: Traceability by means of textual references with a separate attribute

6.4.3.2 Hyperlinks

Unlike textual references, hyperlinks allow direct navigation to the target artifact. Hyperlinks
are created from the source artifact to the target artifact (e.g., from the requirement to a test
case). Bidirectional relationships can be created by cross-referencing.

Requirements Traceability 107

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 107/ 239

Compared to simple textual references, using hyperlinks has the decisive advantage that you
can "jump" directly to the referenced artifacts (see the example in Figure 17). The example
shows a hyperlink from the functional requirement FR_3132 to the test case TC_0021 (as
forwards traceability from the requirement to the test case). It shows the implementation of
a bidirectional traceability relationship: from the requirement to a test case, and from the test
case to the original requirements artifact or to the two requirements artifacts (FR_3131 and
FR_3132).

Figure 17: Traceability via hyperlinks

Note: Hyperlinks can generally only be used within one tool or between tools from the same

provider.

6.4.3.3 Traceability Matrices

Traceability matrices present traceability relationships via references in the cells of a matrix.
One source artifact is documented in each row horizontally. Vertically, one target artifact is
documented for each column. This means that in the resulting matrix, for each cell, the
relationship from the source artifact to the target artifact can be documented. This type of
presentation allows an abstract representation of the dependencies between two types of
artifacts in a matrix.

Traceability matrices are often used to document precisely one relationship type (e.g., fulfills)
between the source and target artifact (see Figure 18).

The traceability relationship is then documented, for example, as a simple "x" in the respective
cell. In this example, it is a backwards traceability from the test case (TC) to the requirement
(FR), maintained by the person who created the test case.

108 Requirements Traceability

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 108/ 239

In the example shown, test case TC_10 tests functional requirement FR_0010; test case TC_20
tests functional requirement FR_0011; test cases TC_30 and TC_40 test functional
requirement FR_0020, and test case TC_40 also tests functional requirement FR_0030.
Therefore, here we have an N to M relationship.

Figure 18: Traceability matrix with one relationship type (FR = functional requirement, TC = test case)

If different relationship types between two artifacts are to be documented (e.g., between
requirements at one level of detail), the respective relationship types can also be documented
in the cells (see Figure 19).

Figure 19: Traceability matrix with multiple relationship types (FR = functional requirement, TC = test case)

The illustration shows an example for the use of different relationship types in one traceability
matrix. The matrix should be read from the row (source artifact) to the column (target
artifact): FR_0011 "details" FR_0010; FR_0020 "formalizes" FR_0011; and FR_0010 is a
"variant for" FR_0020.

Requirements management tools such as DOORS create traceability matrices automatically
based on previously created traceability relationships between artifacts. In practice, however,
such matrices quickly become very large and, due to their size, they are difficult to read and
maintain.

6.4.3.4 Traceability Tables

Unlike traceability matrices, traceability tables enable you to describe traceability
relationships between all artifacts at different levels of detail.

Requirements Traceability 109

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 109/ 239

They thus offer a powerful tool for documenting traceability from goals, through use cases
and functional requirements, to test cases. Traceability tables can be used independently of a
specialized requirements management tool to document traceability between artifacts which
are themselves documented in different tools (e.g., Rational Rose, Visual Paradigm, Quality
Center, etc.) and Office applications (e.g., Word, Excel).

Figure 20: Traceability table (BR = business requirement, UC = use case, FR = functional requirement, CRM =

Customer Relationship Management, DWH = data warehouse, GUI = graphical user interface, TC = test case)

The illustration (Fehler! Verweisquelle konnte nicht gefunden werden.) shows which
artifacts have a relationship with a business requirement (here, the source). Thus, BR_0010
has a traceability relationship to UC_10; to functional requirements FR_0012, FR_0013,
FR_0016; to system requirements CRM_0011, DWH_0010, Billing_0020; to the architecture
design artifact GUI_0081; and to test cases TC_0021, TC_0022, TC_0025. What is not
recognizable in this example is the underlying relationship type between these artifacts.
However, as the traceability relationship always refers to the one source artifact, a
corresponding extension to add the relationship type to the respective target artifact would
be feasible.

For example, with a supplement for FR_0012, we could describe that business requirement
BR_0010 is refined by functional requirement FR_0012: "is refined by: FR_0012“. Via this
extension, we can even use different relationship types for each source-target relationship
(see Figure 21).

Figure 21: Traceability table with relationship types

110 Requirements Traceability

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 110/ 239

6.4.3.5 Traceability Graphs

Another type of presentation for traceability is traceability graphs. In a traceability graph, the
nodes represent the relevant artifacts and the edges represent the relationships between the
artifacts. To be able to distinguish between the different development artifacts (e.g., scenario,
requirement, test case) and relationship types (e.g., refines, implements, tests) at a glance, the
recommendation is to define a corresponding form of notation for the nodes and edge types.
However, the use of traceability graphs is recommended only if these graphs can be created
with a tool automatically based on the artifacts and relationships. In reality, creating and
maintaining such graphs manually is too time-consuming. In principle, however, traceability
graphs provide an easy-to-understand way of checking dependencies and navigating between
the different artifacts. However, similar to traceability matrices and tables, here the actual
artifacts are missing—which is why the context of the traceability relationship is lost. The
following illustration shows an example of a traceability graph (Figure 22).

Figure 22: Traceability graph

The illustration shows traceability relationships between different development artifacts as
nodes (business requirements, use cases, functional requirements, system requirements, and
test cases) and different relationship types as edges (reflected by: tests, formalizes, refines, is
in conflict with).

As we can see from the illustration, traceability graphs provide a graphical option for
representing relationships between different artifacts. However, if you use these graphs,
make sure that you do not select too many artifacts and relationships. With five different
artifacts and relationships, this example is already at the limit of traceability. Ultimately, these
graphical presentations should be used to identify the artifacts between which dependencies
exist. In practice, therefore, the presentation is often reduced to one relationship type.

These dependencies are usually complex enough to avoid bringing additional complexity into
the model with a high number of artifacts and relationships. However, if you use tools, you
can use filters to display or hide certain artifacts or relationship types so that you are only
ever "confronted" with the necessary complexity.

Requirements Traceability 111

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 111/ 239

6.4.3.6 Comparison of the Different Forms of Presentation for Traceability

The table below (Table 7) compares the forms of presentation we have discussed thus far and
identifies their advantages and disadvantages. Table 7 classifies the different forms of
presentation into inline presentation and orthogonal presentation. Inline documentation
includes the forms of presentation "textual references" and "hyperlinks", as here, the
traceability relationships are directly connected to the requirements specification—they are
therefore presented in context. In the case of orthogonal documentation via traceability
matrices, traceability tables, and traceability graphs, the knowledge about the relationships is
generally presented separately from the requirements specification as these descriptions
usually abstract from the artifacts themselves.

Form of
Presentation

Positive Negative Suitable For

Inline documentation of traceability

Textual
references

Can be implemented
independently of tools and
comprehensively

Relationship is visible in
the artifact as plain text

Traceability analyses
are very time-
consuming

Representing
traceability in paper-
based textual
specifications

Hyperlinks Relationship is visible in
the artifact as plain text

Easy navigation between
artifacts to detect direct
dependencies

Traceability between
different tools is not
always possible without
a lot of effort

Representing
traceability in electronic
specifications

Orthogonal documentation of traceability

Traceability
matrices

Dependency between two
artifacts is visible quickly
and easily

Manual creation of
traceability matrices is
time-consuming and
leads to large, only
poorly populated
matrices

Representing only one
single relationship type
between two specific
artifact types (e.g., use
cases and
requirements)

Traceability tables Can be implemented
independently of tools

Enable clear presentation
of the extended pre- &
post requirements
specification traceability

Allow diverse traceability
analyses

Highly complex to
create

Representing
traceability between
textual and model-
based artifacts in
different
documents/tools

Traceability graphs Graphical presentation of
traceability allows
"abstract" presentation of
traceability relationships
between artifacts

Can only be used with
appropriate tool support

Representing complex
traceability between
artifacts in a
requirements
management tool

Table 7: Forms of presentation for traceability relationships

112 Requirements Traceability

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 112/ 239

6.5 Developing a Strategy for Project-Specific Traceability

The creation and use of traceability in a project must be planned specifically. It is not usually
appropriate to document all possible relationships between all artifacts. Instead, at the
beginning of the project, you should think about why traceability is necessary in this project
and at what points which kind of traceability will be required to fulfill this goal. To create a
traceability strategy, you have to answer the following questions:

▪ Traceability goal: why or for what purpose must traceability be implemented in this
project? This question must be answered by the traceability goal which we have already
mentioned several times.

▪ Usage strategy: what should the documented traceability be used for? This question
must be answered by a usage strategy.

▪ Recording strategy: who is responsible for documenting traceability? This question
must be answered by a recording strategy.

▪ Project-specific traceability model: which are the artifacts between which traceability
should be documented, and how should it be documented? This question must be
answered by a strategy for documenting traceability.

Note: In addition to answering these questions, you must in particular make sure that all

participants know the strategy, that they understand it, and that above all they accept it.

Otherwise, regardless of how sophisticated the strategy is, it will disappear without a trace in

everyday project life.

6.5.1 The Traceability Goal

The traceability goal should answer the question of why traceability is required or should be
established in the respective project. The necessity for traceability can either be due to
external reasons (e.g., to fulfill standards) or reasons internal to the project (e.g., to be able to
process change requests more quickly and more correctly).

Traceability goals triggered by external factors include:

▪ Guidelines or development standards specified by the company to fulfill certifications:
for example, CMMI (SEI capability maturity model integration) [SEI1999], [SEI2010];
ISO 9000/ISO 9001 [ISO9000], ISO 12207 [ISO12207]

▪ Legal regulations prescribed by laws or ordinances in certain markets and domains: for
example, SOX (Sarbanes-Oxley Act) [USCo2002]

▪ Guidelines specified by certain domains: for example, IEC DIN EN 61508 [DIN61508],
Department of Defense DOD-STD-2167A

Traceability goals triggered by internal (project-driven) factors include:

▪ To support verifiability to the client: for example, why a requirement was implemented,
how a requirement was implemented, the fact that a requirement was implemented

▪ Quality assurance of specifications through identification of unnecessary requirements
in a specification (without a source) or missing test cases

Requirements Traceability 113

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 113/ 239

▪ Support for maintenance, administration, and further development of a system: for
example, through identification of the requirements and successor artifacts to be
changed

6.5.2 The Usage Strategy

The usage strategy should explain how the traceability information recorded is to be used.

The usage strategy defines how the traceability information documented is to be used by the
team. For example, a usage strategy could refer to the impact analysis where traceability
relationships are used to determine which requirements and successor artifacts are affected
by a change. The usage strategy also defines who is permitted to or should perform analyses
of which artifact types and relationship types.

The impact analysis is generally performed by the requirements manager. Based on the
requirements artifacts to be changed and the traceability relationships documented, the
requirements manager checks which other goals, requirements, architecture design artifacts,
test cases, etc. are affected by the change.

In contrast, with a test coverage analysis from the requirements view, the focus is on
requirements artifacts and test cases to check whether all requirements are covered by test
cases. This analysis can be performed by either the requirements manager or a test manager.

Possible uses of traceability information that is included in a usage strategy are:

▪ Impact analysis: traceability is used to identify the extent of change in requirements
and successor artifacts

▪ Test coverage analysis: traceability is used to identify the missing test coverage for
requirements

▪ Reusability: traceability is used to identify reusable artifacts

▪ Frequency of change: traceability is used to identify the frequency and the background
to changes to requirements

▪ Proof of implementation: traceability is used to prove the implementation of
requirements

Note: You generally define the usage strategy based on the goals. Think about what you want
to use the traceability information for, who should use it, and which relationship types and
artifacts are relevant for this use.

6.5.3 The Recording Strategy

The recording strategy should answer the question of who implements the required
traceability relationships and keeps them up to date. It defines the responsibility for
documenting traceability relationships. In the recording strategy, for each relationship type
between two artifacts, you define who is responsible for maintaining this relationship and
when they should do so.

114 Requirements Traceability

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 114/ 239

A recording strategy can be, for example, the chronological documentation of traceability
relationships proposed by [HJD2011] or [WiBe2013]. The relationship between two artifacts
is created as soon as a new artifact is created (e.g., the relationship type "details" for a user
requirement to a business requirement is maintained by the business analyst as soon as a user
requirement is created for a business requirement).

The advantage of this is that there is a clear responsibility for setting traceability relationships
and that traceability relationships can be created when an artifact is created.

For example, if a business analyst were responsible for maintaining the traceability
relationships between test cases and requirements, they could not do so until the test cases
were created. The business analyst would also have to make assumptions about which test
cases should be used to test the implementation of which requirements. We would have
double the effort here and a corresponding error rate, which is why we also recommend the
chronological documentation of traceability relationships. In this case, you "only" have to
define which person or role in your project is responsible for maintaining the relationship
types you have defined in the project-specific traceability model.

6.5.4 The Project-Specific Traceability Model

The aim of the project-specific traceability model is to answer the question of how (that is,
using which form of presentation, see Section 0) and between which artifact types traceability
should be documented. Therefore, before you document traceability relationships, before
documenting your requirements, you must be clear about the artifact types that you want or
have to document traceability between (see Section 6.5.1). You describe these specifications
either textually, as an independent information model (for an example, see Figure 23), or as
supplementary information in your requirements information model.

A project-specific traceability model describes the permissible relationship types between the
relevant requirements artifact types. It also describes how (i.e., with which form of
presentation) traceability must be documented (see Section 6.4.3). The creation and use of a
project-specific traceability model is described in Section 6.6.

6.6 Creating and Using Project-Specific Traceability Models

The specification of the documentation strategy—that is, the traceability model, with its
permissible artifact types and the permissible relationship types and the form of
presentation—allows a clear presentation to all project participants of which artifact types
and relationship types exist and how they must be maintained (see [Pohl1996], [Pohl2010],
[MGP2009], [MJZC2013]). The person(s) responsible for maintaining this information and the
point in time at which this must be done are defined by the recording strategy (see Section
6.4.3).

Note: For the actual implementation and use of a project-specific traceability model that has been

developed for the project or company, the recommendation is generally to use a requirements

management tool that maps the corresponding artifacts, the permissible relationships, and the

corresponding stakeholder roles. Of course, all methodological constructs can be implemented

with conventional Office applications, but often, these lack the option of analyzing manually set

traceability relationships automatically or creating required impact analyses.

Requirements Traceability 115

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 115/ 239

6.6.1 Creating a Project-Specific Traceability Model

In a project-specific traceability model, you define which relationship types (e.g., is_refined_by;
is_tested_by) should or may exist between which artifact types (e.g., requirements and test
cases).

The following describes a sample process for defining a project-specific traceability model.

▪ Selection of a reference schema: The first step should be to check whether an existing
traceability model can be reused and adapted. An effective way to define a project-
specific traceability model is to reuse an existing traceability model from a similar
project or a company-wide traceability model. This type of traceability model can serve
as a basis for defining the project-specific traceability model and will usually already
contain a large number of the artifacts and dependencies to be defined.

▪ Selection of the artifact types: In this second step, you define the artifacts between
which traceability should be ensured in order to support the goal set in the traceability
strategy and the usage scenarios—for example, traceability between use case and
functional requirement and between requirement and test case.

▪ Definition of permissible relationship types between artifacts: Here you must
define which traceability relationships (see Section 6.3) are allowed between two
artifact types—for example, a valid relationship between requirement and test case is
"is validated by".

▪ Specification of the number of traceability relationships: Here you define the
minimum number of relationships expected between the real artifacts (at instance level
of the traceability model)—for example, each requirement requires one traceability
relationship to a test case.

▪ Definition of the dependency between artifacts: Here you define which artifact is
dependent on another artifact—for example, a test case depends on the content of the
requirement. When using unidirectional relationships, pay attention to referencing (see
Section 6.4.2)

The example traceability model (Figure 23) presents the different traceability types
permissible between the different artifact types. For example, a requirement can detail
another requirement or a business goal. A requirement is realized by a design element. A
requirement is tested by a test case. In this model, for example, it would not be permissible
for a test case to be connected with a business goal via the relationship type details.

116 Requirements Traceability

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 116/ 239

Figure 23: Example of a simple traceability model

With this specification, you can create a clear picture for all participants of the artifact types
between which traceability should be realized and what the valid relationship types are. In
practice, this model can and will be significantly more detailed and more extensive than the
example shown, as there are often more artifact types and relationship types.

Note: To create specific traceability based on a project-specific traceability model, the

requirement model elements and relationships in the traceability model (information model) are

instantiated and documented according to the artifacts and relationships defined in the

traceability model.

Requirements Traceability 117

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 117/ 239

The traceability model can either be integrated into the requirements information model (see

Chapter 2) or be created as a separate information model. An argument in favor of a separate

traceability model is the focus on the relevant artifacts during the creation of a traceability strategy

(e.g., when the responsibilities are defined). However, an argument in favor of a joint information

model is the central maintenance of, for example, artifact designations, new artifacts, etc. in the

event of changes.

6.6.2 Using a Project-Specific Traceability Model

In addition to defining artifacts and traceability relationships, for example in an information
model, further aspects have to be considered for the implementation and use of a project-
specific traceability model:

Definition of the form of presentation

After defining which relationships between which artifacts should be documented, you must
clarify the form of presentation to be used to document traceability relationships. The
selection of the form of presentation for traceability relationships is generally influenced by
the form of presentation of the artifacts—that is, if the requirements artifacts have been
recorded purely in text form, you will probably also document the traceability relationships
as textual references or hyperlinks rather than via traceability graphs. (See Forms of
Presentation, Section 6.4.3).

Providing support for recording data

Recording traceability relationships between artifacts represents an additional effort, which
usually serves other stakeholders (e.g., project managers). Therefore, it is very helpful if the
documentation of traceability relationships is supported as far as possible. This can be done
on the one hand by requirements management tools, or by self-programmed solutions for
example with Word macros.

Creating an alignment between tool artifacts and project artifacts

When using a requirements management tool, a translation into the existing terminology of
the tool is usually required. In this step, identifiers of the artifacts and relationship types
defined in the model are linked to identifiers offered by the tool and referenced uniquely. For
example, if the tool offers only one artifact type "Requirement", but the traceability model
distinguishes between "User requirement" and "System requirement", then an appropriate
mapping and, if necessary, assignment of an additional attribute is needed here, allowing later
differentiation.

Peter Reber is now faced with the challenge of developing a traceability
strategy for his project. For this purpose, he has defined the following for
himself and his team:

1. Traceability goal

For Peter Reber, the use of traceability is driven by two things: (a) the software
development unit should reach the next CMMI level, and (b) Peter would like
to have the ability to provide evidence that only requirements requested by
management have been implemented.

118 Requirements Traceability

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 118/ 239

In the past, there was often unnecessary discussion about the effort involved
here, as management had the impression that IT only implements things that
nobody needs and that is why everything is so expensive.

2. Usage strategy

Peter wants to use traceability essentially for the following purposes:

1) As evidence that only things directly and indirectly justified by business
requirements for the project are developed

2) As evidence that a test case was planned for each requirement

3) To analyze the effects of changes on existing requirements

(1) As evidence that only requirements requested by management in the
requirements specification in the project were implemented. This evaluation
is to be realized via a dedicated relationship type from the development artifact
to the requirement. The evaluation that no development artifacts are created
without a dedicated requirement at business level will be created by the
developer. This presentation should contain all development artifacts with the
associated requirements artifacts. If the evaluation contains development
artifacts that cannot be assigned to a requirement at business level, these
artifacts must be clarified with the designer and the developer to prevent
unnecessary and undesired functionality being implemented.

(2) To check the test coverage, an evaluation of a dedicated relationship type
from the requirement to the test artifact is to be used to ensure that all
requirements are covered by test cases.

This evaluation will be created by the requirements engineer and should
contain all requirements artifacts and the associated test cases. If requirements
have no relationship with a test case, the test manager must check these
requirements.

(3) To support changes to requirements with a targeted change analysis, three
dedicated relationship types are to be introduced: (1) between business and
user requirements, (2) between user and system requirements, and (3)
between the requirements themselves to document logical and content-based
dependencies. This evaluation will be triggered by the requirements manager
(Peter himself) when changes occur. The result should present all predecessor
and successor artifacts for a selected set of requirements. For each
requirements artifact, it should be clearly recognizable which predecessor and
which successor artifacts have a relationship with the requirement. This
evaluation then helps with the assessment of the impact this change actually
has on the predecessor and successor requirements artifacts. This means that
it allows you to evaluate the expense (in the sense of person days and costs)
created by the change and whether any particular difficulties (e.g., architecture
changes) are to be expected.

Requirements Traceability 119

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 119/ 239

3. Recording strategy

Relationship types between development artifacts and requirements artifacts
(system requirements) are to be maintained by the respective developer as
soon as a functionality is implemented for a requirement.

Relationship types between test cases and requirements artifacts must be
maintained by the test manager as soon as a test case is created for a
requirement. Traceability must be documented as a bidirectional relationship,
which is why the test manager requires restricted write access to the
requirements to record the forwards relationship to the test case.

Relationships between the different requirements artifacts must be
maintained by the requirements engineer and business analysts as soon as a
new requirement is created that (a) represents a detailing of or (b) has a logical
or content-based dependency to an existing requirement and influences this
existing requirement in some way.

4. Creation of a traceability model (documentation strategy)

To implement traceability across different documentation tools and
documents, textual references with attributes intended for that purpose (see
Figure 16) and traceability matrices are to be used.

Peter Reber has documented the traceability relationships to be maintained
between artifacts in the following traceability model.

In the project, there are three levels (classes) of requirements: business
requirements, user requirements, and system requirements.

Business requirements can be detailed either by user requirements or directly
by system requirements. User requirements are always detailed by at least one
system requirement. Requirements themselves (see the abstract class
"Requirement") can be in a relationship with one another via an "influences"
relationship type if they are dependent on each other logically or from a
content perspective. Further detailing of the content is not currently planned.
Each requirements artifact will be tested by a test case and ultimately, every
system requirement will be implemented by a development artifact. There
must be NO development artifacts that do not realize a system requirement.
However, there may be test cases that have not been assigned to new
requirements, that is, they are not used directly to check this requirement—
these are regression test cases, for example.

120 Requirements Traceability

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 120/ 239

Figure 24: Traceability model for our example Bank AG

6.7 Measures for Evaluating Implemented Traceability

In the previous section, we looked at how you can document traceability and how you can set
up a traceability strategy for your project. However, the traceability strategy that you
introduce must also be put into practice and must not exist merely on paper. Therefore, during
requirements management, at some point the question will be raised as to whether the
traceability strategy set up is being or has been followed, and how completely traceability
relationships between the artifacts have actually been documented.

For this purpose, perform a check to ensure, on the one hand, the quality of the current
documentation with regard to traceability, and on the other hand, to identify problems in the
traceability strategy. Checking traceability information provides an insight into the quality of
the current documentation.

Requirements Traceability 121

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 121/ 239

The following measures can support you in checking the completeness and quality of the
traceability relationships:

▪ Ratio of the number of correct traceability relationships (e.g., has the correct
relationship type been used, does the referenced artifact still exist) to the total number
of traceability relationships (correctness)

▪ Ratio of the number of existing traceability relationships to the total number of
traceability relationships required (completeness)

▪ Ratio of the number of requirements with traceability relationships to the total number
of requirements (density)

▪ Ratio of the number of test cases with traceability relationships to requirements to the
total number of test cases (backwards traceability, test case to requirement)

▪ Ratio of the number of requirements with traceability relationships to a test case to the
total number of requirements

▪ Ratio of the number of documents with correct references to the total number of
documents (e.g., does the document exist in the specified directory)

Note: Note that the checks for correctness in particular cannot be fully automated. Content checks

in particular require a human inspection. Automated checks can be used, for example, to check

the existence of artifacts or documents. Furthermore, restricted statements about the correctness

of relationship types would be possible if the check of the relationships used were based on the

traceability model created and, for example, a relationship type is detected between two

requirements that may only be set between test cases and requirements.

A low number of traceability relationships compared to the number of artifacts suggests that
the relationships have not been maintained consistently and completely. On the other hand, a
low number of correct relationships in relation to the total number of relationships suggests
that either relationships were negligently maintained, or that changes were not consistently
applied to all the artifacts concerned.

Any deviation may have different reasons that need to be discussed. For example, create a
threshold value for each dimension that you want to achieve. If this threshold value is not met,
you should check why.

Furthermore, based on your usage strategy, check whether suitable results are achieved. If
you do not get the results you want, this can be for at least two reasons: (1) the recording and
documentation strategy was not followed satisfactorily, or (2) the documentation strategy
was not extensive enough to fulfill your usage strategy.

Note: Follow up and check whether your traceability strategy is actually being put into practice or

whether it was just an ideological definition. If you find out that the traceability strategy is not

being followed, or is not being followed satisfactorily, find out why and try to remove the obstacles

(too complicated, not understood, too time-consuming, no tool support, etc.).

Possible reasons for missing or incorrect documentation of traceability are:

▪ The necessity of documenting traceability is not known within the team (the benefits
may not have been understood)

122 Requirements Traceability

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 122/ 239

▪ Missing traceability strategy within the team or the traceability strategy has not been
understood

▪ Time constraints in the project do not allow documentation of traceability

▪ There is no agreed and accepted traceability model within the project team

▪ Insufficient tool support for recording traceability relationships

6.8 Challenges for Traceability between Textual and Model-
Based Artifacts

Traceability between textual artifacts (e.g., functional requirements) and model-based
artifacts (e.g., activities in UML activity diagrams), or between model-based artifacts
themselves can only be achieved with high effort and is therefore not put into practice
frequently in real life.

The reasons are generally a lack of integration between model-based and text-based
requirements engineering and requirements management tools, as well as the missing unique
(at least visible) reference for model elements (e.g., link from a textual requirement to a class
in a UML class diagram). Of course, this class has a unique identifier somewhere within the
tool or in the properties, but it is difficult for a user to find this. Even though today's tools do
not offer complete, high-performance support for linking model artifacts with textual
requirements artifacts, there are options for establishing traceability across these different
artifacts. Possible solutions include either using separate labels in the identifiers here or
creating unique textual identifiers via glossaries that can be referenced. Figure 25 shows an
example for a tool-independent implementation of traceability between a use case model and
textual requirements.

Figure 25: Traceability between textual and model-based artifacts

Requirements Traceability 123

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 123/ 239

Figure 25 shows an example of a traceability table. Here you can see that there is a traceability
relationship between functional requirement FR_0012 and use case UC_10. In principle, the
relationship type could be added to the traceability table (see Section 6.4.3.4).

Figure 26: Traceability between textual and model-based artifacts

Figure 26 above shows a further example for traceability between textual and model-based
artifacts. In this example, there is a traceability relationship from textual requirements to
activities in an activity diagram. In activity diagrams in particular, this type of traceability can
be used for a better description of the individual activities and conditions. For this purpose,
in the example, every activity was described with an identifier (e.g., ACT_00xx) in front of the
actual name. Here, the textual requirement references (as a unidirectional relationship) to the
activity diagram and the corresponding activity via a textual reference. Bidirectional
relationships can also be represented, but this generally makes such models more difficult to
read, which means that you have to weigh up what is more important—bidirectional
traceability or the legibility of the models.

Practical tip: Some modeling tools support the realization of traceability between models and

textual artifacts via word patterns or glossaries.

6.9 Content for the Requirements Management Plan

Document the traceability strategy you define, including the traceability model, in your
requirements management plan (see the case study in Section 6.6). At this point, it is less
important how (i.e., in which form) you integrate the things into your requirements
management plan, and more important that you document your thoughts and definitions as
to how you want to record, present, and use traceability in your project in your requirements
management plan. This is the only way to discuss and agree these concepts with all
stakeholders involved before the project starts.

124 Requirements Traceability

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 124/ 239

Furthermore, the explicit documentation of your traceability strategy in a requirements
management plan means that participants who join the project at a later stage can quickly
familiarize themselves with the project and read the organizational and methodological
specifications.

6.10 Literature for Further Reading

[GoFi1994] O.C.Z. Gotel and A.C.W Finkelstein: An Analysis of the Requirements Traceability
Problem. In Proceedings of IEEE International Conference on Requirements Engineering,
1994.

[HJD2011] E. Hull, K. Jackson, and J. Dick: Requirements Engineering. Springer, 3rd Ed, 2011.

[MGP2009] P. Mäder, O. Gotel, and I. Philippow: Getting Back to Basics: Promoting the Use of
a Traceability Information Model in Practice. In: Proceedings of 5th International Workshop
on Traceability in Emerging Forms of Software Engineering (TEFSE2009), Vancouver, Canada,
May 2009.

[MJZC2013] P. Mäder, P.L. Jones, Y. Zhang, and J. Cleland-Huang: Strategic Traceability for
Safety-Critical Projects. In: IEEE Software, Volume 30, Issue 3, May/June 2013.

[Pohl2010] K. Pohl: Requirements Engineering – Fundamentals, Principles, Techniques.
Springer, 2010.

[VanL2009] A. van Lamsweerde: Requirements Engineering – from System Goals to UML
Models to Software Specifications. John Wiley and Sons, 2009.

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 125/ 239

7 Variant Management for Requirements

Before we look at variant management in the context of requirements management and
describe how you document variability in requirements, we will explain a couple of terms
from product line development.

We must first distinguish between the terms "product family" and "product line" to strengthen
the understanding for product lines.

Definition 7-1: Product family: A product family is a set of connected products that complement

each other and cover the requirements of a common application area (e.g., Office suites). These

products are generally designed to supplement one another, see [Gabl2014a].

Definition 7-2: Product line: A product line groups different variants of a product. The different

products can generally be substituted for one another and differ, for example, in the scope of

functions and price (e.g., Apple iPhones). The products in a product line are generally defined such

that each of the products meets specific customer wishes, see [Gabl2014b].

A product line therefore encompasses a set of specific, differentiated products that all share
a common basis (referred to as commonalities). In addition to these commonalities, a product
line has a defined variable part that enables different products to be created (referred to as
the variability of the product line). Thus, different products can be created through the defined
commonalities and the variability of the product line. A product line can encompass hardware
and software parts that have been defined as commonalities or variability and can be used in
different products.

A requirements pool is a set of requirements that contains more than the set of requirements
for a specific product. It can also contain requirements that are not currently considered in
any product.

Product line development differentiates between two different processes:

▪ Domain engineering: In domain engineering, the commonalities and variability of
existing product variants are identified and used to create a model of the product line.

▪ Application engineering: Here, the product line model is adapted on a product-specific
basis, thereby creating product variants.

126 Variant Management for Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 126/ 239

Definition 7-3 of software product lines (from [ClNo2007]): “A software product line is a set of

software-intensive systems sharing a common, managed set of features that satisfy the specific

needs of a particular market segment or mission and that are developed from a common set of

core assets in a prescribed way.”

Variability is a term frequently encountered in the context of product lines (see [PBL2005],
[Pohl2010]). It enables the specification (and therefore the implementation) of different
products through the definition of variation points and variants, without necessitating the
creation of a separate specification for every product.

Example of commonalities and variability of a product line: The Apple iPad can be understood as

a product line. The commonalities of iPads include the housing, the displays, the processors.

Specific product variants (e.g., iPad, 64 GB, black, with Wi-Fi and 4G) are created through the

variation points "different colors", "different memory sizes", etc. The variability is described via

variation points and variants.

Variation points are points (e.g., in the specification) that allow or require the selection of
specific variants.

Example of variation points: The variation points "iPad memory" and "iPad color" are variation

points that are made more specific by different variants.

Definition 7-4: Variation point: A variation point describes where—at what point—within a

product line the requirements vary.

Variants are specific forms of artifacts (e.g., requirements or properties of the product) with
reference to a variation point.

Example of variants (of a variation point): The variation point "iPhone memory" has the following

variants: 8 GB, 16 GB, 32 GB, 64 GB.

Definition 7-5: Variant: Variants describe two or more possible (permissible) forms of the

requirements at a variation point (e.g., 7-inch, 10-inch, 12-inch display).

When we refer to variability below, we are always referring to the differences between
different products—that is, the variants that are valid simultaneously in a product line (from
which different products can be derived). The changing of requirements artifacts over time is
not variability, but rather versioning (see Chapter 5).

Variant Management for Requirements 127

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 127/ 239

Product line development generally differentiates between domain development and
application development (see [PBL2005]). Domain development creates the reusable artifacts
as commonalities and variability of the product line. Application development creates
individual products based on reusable artifacts.

In this case, every product contains all of the commonalities and a selection of variants. To
allow executable and consistent products to be derived within the scope of reuse,
corresponding selection and combination rules must be considered specially for selecting
variants. For this purpose, corresponding rules (dependencies) are defined in domain
development for the ability to combine and derive specific products (see Section 7.1).

Even if it is not your intention to operate product line development, the use of variability can
be an interesting option for you for the following reasons:

▪ To allow you to describe different variants for a requirement—which meet the client's
goal to different levels of quality—in your requirements specification. At the
requirements elicitation stage, the client is often still unsure whether they want solution
A (e.g., navigation with voice guidance) or solution B (e.g., navigation with voice and
image guidance). The client often wants to make their decision dependent on the
expense or the implementation time. Therefore, even in standard product development,
you sometimes have to specify different variants.

▪ To allow you to describe optional requirements within your requirements specification,
whereby these optional requirements could be considered as additional requirements
and should be evaluated before realization. The reasons for such optional requirements
are often analog to the reasons currently listed, that is, uncertainty in the mind of the
client about what they actually want.

▪ To enable you to document different installation and configuration options for an
application in a targeted way using variation points and variants. In this case, we are not
talking about a product line, but rather about variability in the sense of configuration
options.

▪ To enable a targeted reuse of requirements in similar projects.

▪ To allow you to develop similar product variants that can become a specific product
variant either before implementation or on delivery or licensing.

Practical tip: In reality, we encounter this necessity to document variants as alternatives and

options as soon as a stakeholder cannot decide what they want specifically, and they want to make

their decision dependent on effort, for example. In this situation, via the mechanism of variability,

to estimate the effort you can signal to the subsequent development phases that artifacts shown

as variants must be considered separately.

7.1 Using Variants of Requirements

As already explained, variants always refer to variation points. A requirements document
generally contains a range of variation points and variants, even if we are not in product line
development and variability was not explicitly documented.

Variability can be documented implicitly or explicitly. In the case of implicit documentation,
it must be clear from the formulation of the requirement that different product variants are
possible.

128 Variant Management for Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 128/ 239

In implicit documentation, the word "or", for example, indicates that different product
variants are possible (see Figure 27). However, the word "or" is not a reliable indicator of a
variation point, as it is also frequently used in logical conditions. Other key terms such as "both
... and" are also generally not clear enough.

Figure 27: Example of an implicit documentation of variability

In the case of explicit documentation of variability, variation points and variants are either
integrated into the requirements specification or are created orthogonal to the requirements
artifacts (i.e., in a separate model). In the case of textual requirements, both the variation
points and the possible variants are explicitly shown in the requirement text in an integrated
documentation (Figure 28).

Figure 28: Example of an integrated explicit documentation of variability

For explicit documentation of variability in an orthogonal model, the following notation can
be used, for example (see Figure 29, [PBL2005], or [Pohl2010]).

In the case of orthogonal documentation, the textual requirement remains untouched. The
variation points and variants are documented in a separate model, and the variation points
and variants are set in a relationship to the associated requirements artifacts—via a
traceability relationship, for example (see Chapter 6).

For the subsequent derivation of specific products as part of application development, when
documenting variability, you must take into account that not all variants can be combined
freely with one another. There are clear rules about which variants can be or must be
combined at a variation point, and which variants may or must be combined across variation
points or not.

Here, for example, the orthogonal model (Figure 29) indicates which rules have to be
observed when selecting the variants "Barometric altitude measurement" and "GPS-based
altitude measurement". In this example, only one of the two variants may be selected for a
specific product.

Variant Management for Requirements 129

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 129/ 239

Figure 29: Example of explicit documentation of variability as an orthogonal model

The following variability model (see [PBL2005]) describes the dependencies that can exist
between variation points and variants. The variability dependency describes how the variants
of a variation point can be combined with one another. The following relationship types exist
here:

▪ Alternative relationships: to express that at a variation point, either variant 1 (GPS-
based altitude measurement) or variant 2 (barometric altitude measurement) must be
selected (see Figure 29).

▪ Optional relationships: to express that a variant may be selected at a variation point—
for example, saving the altitude difference covered.

▪ Mandatory relationships: to express that a variant must be selected at a variation
point (that is, a variant is a mandatory component at this variation point)—for example,
the setting of the metric or English measuring system for height measurement.

The relationship dependency describes how variants or variation points can be combined with
one another. The following commonly used relationship types exist here:

▪ Requires: to express, for example, that the selection of one variant requires another
variant to allow it to be realized in a specific product. To continue our example, the
variant for barometric altitude measurement requires an air pressure sensor as well as
the GPS module.

▪ Excludes: to express, for example, that one variant is excluded by the selection of
another variant as the variants exclude each other mutually for a product. Again, to
continue our example, the selection of the GPS-based altitude measurement excludes
the selection of the barometric weather forecast as, like the barometric altitude
measurement, this can only be realized via an air pressure sensor.

130 Variant Management for Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 130/ 239

Figure 30: Variability model

Different products can be defined for implementation, taking account of the variability and
relationship dependencies. The point at which variability is resolved—that is, the point at
which specific variants must be selected to get a specific product—is referred to as the
"binding time". According to [CHW1998], variability can be bound before development (i.e.,
before the creation of the product), on realization (i.e., at implementation), on creation of the
software (i.e., at compilation), on initial installation, or even at runtime.

The later that variants are bound to make a product more specific, the more the term
variability blurs with the term configuration. The following examples are intended to make
this clear:

▪ Binding time of a variant before product realization: This means, for example, that
a customer decides on a specific product variant before implementation. For this bound
variant, a subsequent change to another variant is no longer possible. For example, a
customer wants a hiking watch with barometric altitude measurement.

▪ Binding time of a variant during initial installation: This means, for example, that a
customer decides on a specific product variant at installation or commissioning. The
variant selected can no longer be changed at runtime.

▪ Binding time of a variant during runtime: This means that at any point during
runtime, for example, the customer can select a specific product variant. For example,
subsequent purchase of functionality that enables a hiker who has become lost to find
their way back to their starting point using a watch.

▪ Binding time during runtime as configuration: Similarly to the last aspect, during
runtime, a customer can, for example, make changes to their product—for example,
select the colors for the display (monochrome/color), select the language (German,
English, French, Portuguese).

We can use the option to document variation points and variants in requirements for more
than just product line development. The use of variability also helps us to document real
requirements variants for which the stakeholders have not been able to agree on a specific
requirement cleanly and to have them evaluated and estimated by the subsequent phases.
Furthermore, with variants and variation points, we can also document the configuration

Variant Management for Requirements 131

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 131/ 239

settings that can be selected—which are not necessarily attributable to a product line
development—for example, changing the language, so that they are easier to understand.

In product line development in general and in requirements management in particular,
explicit documentation of variability has the following advantages [Pohl 2010]:

▪ Communication: The explicit documentation of variation points and variants supports
communication with the stakeholders as it is easy to see which variants can be selected
at which points and under which conditions.

▪ Decision support: The explicit documentation of variability leads on the one hand to
more conscious decisions about the points at which variability should be provided. On
the other hand, explicit documentation supports the use of variability to select specific
variants for a given product.

▪ Traceability: When requirements are changed, the explicit documentation of
variability—including the relationships to the respective requirements artifacts—
allows the dependent requirement variants to be determined and adapted where
necessary. The orthogonal documentation of variability thus gives us the required
traceability for requirements variants.

7.2 Forms of Explicit Documentation of Variants and
Evaluation of These Forms

As already mentioned at the beginning, in practice, variability is often formulated directly in
the requirements. These forms of explicit documentation use the concepts introduced in
Section 7.1, such as the variation point, variant, variability dependencies, relationship
dependencies, and the documentation of binding times in very different ways.

In practice, there are a number of different textual forms of presentation, and we will look at
the following representatives of these more closely in the following sections (see [Bout2011]).

▪ Textual Assignment of Requirements to Specific Products

▪ Explicit Assignment of Requirements to Specific Products

▪ Explicit Assignment of Requirements to Specific Product Features

▪ Indirect assignment of requirements to features of specific products

We will then analyze these forms of presentation in terms of the concepts for variability
presented in Section 7.1 and present additional criteria for evaluating different forms of
presentation for variability.

Definition 7-6: Feature: A feature is a property or quality of a system that is visible for the user.

132 Variant Management for Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 132/ 239

7.2.1 Textual Assignment of Requirements to Specific Products

One form of documenting variants is to document them in individual requirements with the
textual assignment of the product which the respective variant is valid for (Figure 31).

Figure 31: Example of a textual assignment to specific products

In this example, we see two requirements in slightly different forms. FR_0010 states that for
the premium GPS hiking watch, a barometric altitude measurement should be used. FR_0011
states that for the basic GPS hiking watch, a GPS-based altitude measurement should be used.
In the requirement variants, the product names "premium" and "basic" describe which variant
should be used in which product. This is already a big added value for the implicit presentation
of variability in requirements—think back to our example in Figure 27.

7.2.2 Explicit Assignment of Requirements to Specific Products

Another option for documenting variants is the explicit assignment of requirement variants
to specific products, see Figure 32.

Figure 32: Example of explicit assignment to specific products

In this example, the requirement variants are assigned to the respective product not via a
textual designation in the requirement text, but explicitly via a separate attribute. At first
glance, therefore, we can already see that each of the two requirement variants is valid only
in a specific product. Here, the assignment to products (product variants) is represented by
one product attribute in each case. The respective requirement variant is assigned to the
respective product with an "X" (e.g., FR_0010 to the product "Premium Model"). Of course, the
explicit assignment to products can take another form—for example, via a single attribute
"Product" with the respective products as values of the attribute. The specific implementation
used depends on the number of possible products and the assignment of the variants.

If specific requirement variants are valid for multiple products, for example, then the
assignment via single attributes per product is probably better than the assignment via
attribute values.

Variant Management for Requirements 133

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 133/ 239

7.2.3 Explicit Assignment of Requirements to Specific Product
Features

In reality, the assignment to specific products often leads to a large number of products. This
is because specific products are often defined via multiple dimensions or product features—
for example, segments (basic and premium), markets (Europe, USA, Asia), customer groups
(hikers, runners, cyclists, golfers). If we assume that all variants can be combined with one
another freely, we get 2 x 3 x 4 = 24 products.

Figure 33: Explicit assignment to specific product features

In the example (Figure 33), we show the option of explicit assignment of requirement variants
to product features—for example, to the model and customer group.

Specific products would be, for example, the combinations premium hiker and premium
runner. Requirement FR_0010 "barometric altitude measurement" is assigned to both of these
products. In contrast, for the customer group "Golfer", only GPS-based altitude measurement
is offered, for both the premium and the basic model.

Note about the assignment: Requirements FR_0011 and FR_0012 describe the same requirement

from a content perspective. As requirements artifacts, they differ solely in the assignment to the

customer group and model. The golfer watch is to have only the barometric altitude

measurement—regardless of the model—and therefore requirement FR_0011 was duplicated

because a unique assignment would not have been possible otherwise. If we had added the value

"Golfer" to the attribute "Customer Group" for FR_0011, and the value "Premium" to the attribute

"Model", FR_0011 would be valid for undesired products (e.g., Premium running).

7.2.4 Indirect Assignment of Requirements to Products through
Features

Another option for assigning requirement variants to specific products is the assignment of
requirements to features. Here, features are special properties of the requirements that
describe the variability. In the example shown below (Figure 34), the "Leather strap" is a
feature of the associated requirement FR_0030. Here, features abstract from the total
requirement and look essentially at the property visible for the user (see Section 7.3).

In the example shown below, the requirement is assigned to a feature—for example, FR_0011
is assigned to the feature "GPS-based altitude measurement". These features can often be
found on product packaging or similar, for example, to indicate to the potential customer

134 Variant Management for Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 134/ 239

which features the product has. The second table below in Figure 34 shows the assignment of
features to specific products.

For example, the premium GPS hiking watch has a barometric altitude measurement and a
leather strap, whereas the basic GPS hiking watch has a GPS-based altitude measurement and
a fabric strap. Requirements to which no feature has been assigned (e.g., FR_0070) apply for
all derived products—that is, they belong to the common requirements (or commonalities)
across all products.

Figure 34: Example assignment of requirements to features of product configurations

7.2.5 Comparison of the Forms of Presentation

To compare the forms of presentation, we will use the aspects for reflecting variability
introduced in Section 7.1 and ask the following questions:

▪ Are variation points and variants differentiated and are they recognizable?

▪ Are dependencies (variability dependency, relationship dependency) reflected for the
permissible variant configurations and are these recognizable?

Variant Management for Requirements 135

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 135/ 239

▪ Are different binding times considered for variants?

The image below (Figure 35) compares the above three aspects with the four forms of
presentation presented. The rows represent the criteria and the columns the forms of
presentation.

Figure 35: Analysis of the forms of presentation

When evaluating a specific form of presentation used for variability, the following criteria are
also relevant for practical application of the form of presentation in your projects [Bout2011]:

▪ Teachability: How easily can the chosen form of presentation be taught to non-
technical personnel?

▪ Scalability: How easily can the chosen form of presentation be used for a larger number
of products?

▪ Expandability: How much effort is necessary to configure a new product from existing
and new requirement variants?

▪ Migratability: To what extent can existing requirements documentation be further
developed in the direction of the chosen form of presentation without explicit variability
information?

▪ Verifiability: To what extent can incorrect configurations in the selected form of
presentation be automatically identified?

▪ Comparability: To what extent can requirements of different products be easily
compared?

136 Variant Management for Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 136/ 239

▪ Changeability: How easily can existing requirements for a single product be changed
without affecting other products in the product line?

7.3 Feature modeling

Unlike orthogonal modeling of variability (see [Pohl2010], [BLP2004]), feature modeling is
an integrated modeling of variability in which both the common product features and the
variants, together with their dependencies, are described in one feature model.

The most well-known approach to feature modeling originates from [KCHN1990] and was
introduced with FODA (feature-oriented domain analysis). Over the years, the original feature
model approach has been slightly modified and developed further [KKLK1998], [KLD2002],
[SHT2006].

Analog to our definition 7-6 "Feature", the original definition according to [KCHN1990] is as
follows:

Definition 7-7: Feature [KCHN1990]: "a feature is a prominent or distinctive user-visible aspect,

quality, or characteristic of a software system or system”.

7.3.1 Creating Feature Models

The common and variable features of a product line, including their dependencies, are
described in a feature model. A feature model can be documented in tabular or model-based
form. Feature models are typically presented as a graphical model (feature diagram). Feature
diagrams originate from and/or trees. In feature models, variation points and variants cannot
be clearly distinguished from one another visually (see Figure 36). Depending on the
perspective, features are either a parent feature or a child feature, and therefore either a
variation point or a variant. The lowest leaf elements can clearly be identified as variants. In
contrast, variation points are all non-leaf elements of the tree.

The descriptive elements of a feature diagram can be divided into the following three
categories:

▪ Basic elements (see FODA [KCHN1990])

▪ Advanced elements (see [CzEi2000])

▪ Cardinality-based elements (see [RKGSB2002])

The following model describes a metamodel for feature modeling. On the one hand, the model
shows the refinement relationship between parent and child features (basic elements), and
on the other hand, the dependency relationships between features (advanced elements).

Variant Management for Requirements 137

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 137/ 239

Figure 36: Feature metamodel

The basic elements of a feature model describe parent features and their children. The
refinement relationship describes which features must be included in the configuration of a
specific product and what must be taken into account for the selection of variable features.
Child features can have the following relationships with parent features:

▪ Mandatory: The child feature is mandatory for a specific product.

▪ Optional: The child feature can be selected for a specific product.

▪ Or: At least one of the child features in a group must be selected for the creation of a
specific product.

▪ Alternative: Exactly one of the child features in a group must be selected for the
creation of a specific product.

Using the advanced elements, you can define (similarly to in variability models) which
additional dependencies have to be taken into account when selecting features. The most
common dependency relationships are:

▪ Requires: The selection of feature A implies the selection of feature B.

▪ Excludes: Features A and B cannot be contained in the same product.

The notation used for feature models below is based on [CzEi2000]. Figure 37 describes a
feature model in which the basic elements are used. The model describes the example we have
been using, the "GPS hiking watch". The model shows the "GPS hiking watch" product
presented as the parent feature, as well as three direct child features. The feature "Weather
forecast" is an optional feature for the GPS hiking watch, expressed via the connection with
the empty circle. The two features "Distance measurement" and "Altitude measurement" are
mandatory features for the GPS hiking watch. This is expressed via the relationship with the
filled circle between the parent and child features. In turn, the feature "Altitude measurement"
has refinement relationships to two further child features: "Barometric altitude
measurement" and "GPS-based altitude measurement".

138 Variant Management for Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 138/ 239

These two child features are connected to the parent node via an "alternative" relationship,
which means that only one of the two features may be included in a product configuration.
"Alternative" relationship types are represented by an empty arc across all child features, of
which only one may be selected. In contrast, "or" relationships, which allow the selection of
multiple child features, are represented by a filled arc.

Figure 37: Example feature model with basic elements

Figure 37 shows a normalized form of a feature model. In principle, the single refinement
relationships "Optional" and "Mandatory" can be combined with the group refinement
relationships "Alternative" and "Or" (see the two examples in Figure 38). Even if the three
models appear different at first glance, the meaning of all the models is identical here. The
group refinement relationships "Or" and "Alternative" have a higher value here than the single
refinement relationships "Mandatory" and "Or".

In Figure 38, we can see from the two examples that the "Alternative" relationship has a higher
priority than the "Mandatory" and "Or" relationships between the parent and child features.
Here, regardless of the single parent-child relationship ("Optional" or "Mandatory"), only one
of the two child features "GPS-based" or "Barometric" can be selected. The single refinement
relationship at the child feature can be ignored here. Therefore, in group refinement
relationships, we generally find only the single link to the child feature (see Figure 37).

Variant Management for Requirements 139

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 139/ 239

Figure 38: Example combination of "Alternative" with "Optional" and "Mandatory" relationships

Note: The group relationship types "Alternative" and "Or" have a higher priority for the selection,

which means that the single parent-child relationships "Optional" and "Mandatory" for the

children within a group are not considered.

Building on the example above, the example in Figure 39 shows how the advanced elements
(here the dependency relationships) are presented graphically in a feature model. For this
purpose, a "Requires" relationship was added to the model between the features "Weather
forecast" and "Barometric altitude measurement". This relationship type states that if the
optional feature "Weather forecast" is selected, the alternative feature "Barometric altitude
measurement" must also be selected.

140 Variant Management for Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 140/ 239

The "Requires" relationship is represented by a dotted arrow with the tip on the required
feature element. The relationship type "Excludes" is represented by a dotted arrow with a
closed tip in the direction of both features.

Figure 39: Example feature model with advanced elements

Cardinality-based elements can be used to further specify the refinement relationships
between basic elements, for example by adding notations such as [min, max] to the parent-
child relationships. This allows you to express, for example, that in the event of an "Or"
selection, not all but rather a maximum of two child features may be selected (e.g., only two of
the 14 languages may be selected). For this purpose, we would add the desired cardinality to
the "Or" and "Alternative" relationship types.

7.3.2 Deriving Product Configurations from Feature Models

To create specific products, the variable features of a feature model must be bound at a certain
point in time (see Section 7.1). To determine how many different products can be derived
from one feature model, the model must be "multiplied out". For this purpose, starting from
the root (that is, the uppermost parent feature), all product configurations possible based on
the refinement and dependency relationships are defined.

Variant Management for Requirements 141

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 141/ 239

Example: Product configurations of a feature model

Based on the feature models introduced above, the following two examples should show which

product configurations the models permit. The example in Figure 37 allows four different

products:

• Product 2: GPS outdoor watch + weather forecast + distance measurement + altitude
measurement + barometric altitude measurement

• Product 2: GPS hiking watch + distance measurement + altitude measurement + barometric
altitude measurement

• Product 3: GPS hiking watch + weather forecast + distance measurement + altitude
measurement + GPS-based altitude measurement

• Product 4: GPS hiking watch + distance measurement + altitude measurement + GPS-based
altitude measurement

In contrast, the example in Figure 39 allows only three different products, as the "Requires"

relationship between "Weather forecast" and "Barometric altitude measurement" excludes the

combination with the "GPS-based altitude measurement"—that is, product 3.

• Product 1: GPS hiking watch + weather forecast + distance measurement + altitude
measurement + barometric altitude measurement

• Product 2: GPS hiking watch + distance measurement + altitude measurement + barometric
altitude measurement

• Product 3: GPS hiking watch + distance measurement + altitude measurement + GPS-based
altitude measurement

7.3.3 Identifying Features

Features are not generally defined on a "greenfield" basis; they must be identified and defined
based on existing system documentation, requirements documents, etc. [BoHo2011]
describes a semi-automatable approach for identifying features from existing specifications
in four steps.

▪ Step 1: Search for nouns: Requirements texts are examined for nouns as the starting
point for identifying features.

▪ Step 2: Normalization: In the next step, the nouns found in step 1 are normalized—that
is, they are cleaned up from a language perspective and put into their basic form (e.g.,
plural nouns are put into the singular form).

▪ Step 3: Removal of duplicates: In the third step, duplicates are removed from the list
of normalized nouns.

▪ Step 4: Removal of stop words: Finally, general nouns that have nothing to do with the
product itself are removed from the list (e.g., words that deal with contractual or general
development aspects in the project) so that the result is a list of candidates for features.

142 Variant Management for Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 142/ 239

In this approach, the primary objective is to support you in identifying possible variation
points and variants from existing, textual requirements so that you can use these as a basis
for creating a feature model. This is particularly helpful if you already have documents that
you regularly reuse—but with no explicitly documented variability—but have not yet defined
a variability model or feature model for your new product line.

Example: Identifying features from a requirement text

The input for the analysis is the following requirement:

R_1020: The customer should be able to choose between a metal strap, a fabric strap, or a leather

strap as the strap for the GPS hiking watch.

With step 1 (search for nouns), the following nouns were identified: strap, GPS hiking watch,

customer, metal strap, fabric strap, leather strap.

In our example, there will be no change for steps 2 and 3 because we are looking at only a singular

requirement.

By applying step 4 (removal of stop words), the term customer would be removed from the list.

This can be identified as a stop word here because this noun does not describe a property of the

product—even though the customer is the person who is to purchase the product later.

The output of the analysis is the following feature candidates: strap, GPS hiking watch, metal

strap, fabric strap, leather strap.

Based on these noun lists, an expert can then usually quickly identify potential features or
variation points and variants. However, one significant disadvantage of this procedure is that
in particular, variation points that are not explicitly mentioned in the text cannot be identified.
Furthermore, the correct relationship types between the parent and child features generally
have to be analyzed from the requirement itself. Variation points (i.e., parent features) and
the relationships to the child features can often be identified if the technical expert insistently
asks about the reason (i.e., the "why") for the different variants. For example, in response to
the question of why the watch sometimes has a fabric strap, sometimes a leather strap, and
sometimes a metal strap, the answer is that different customers prefer different straps.

Accordingly, the strap is the corresponding variation point (or rather, the parent feature) and
the specific types of strap are the variants (or rather, the child features).

7.3.4 Tool Support

If you want to document variability explicitly, this is difficult to do without using special tools.
Of course, you can create feature models as and/or trees with existing modeling tools—
however, these generally do not support any relationship types for variability or the
derivation of product configurations.

However, there are a number of tools on the market that allow you to:

▪ Create feature models

▪ Create product configurations

Variant Management for Requirements 143

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 143/ 239

▪ Check product configurations for reliability

These tools generally have interfaces to other modeling or requirements management tools
in which the actual development artifacts (e.g., requirements) are located. This enables you to
place variability models or feature models in relationships with other development artifacts
so that you can establish the traceability between the different models.

7.4 Content for the Requirements Management Plan

Where necessary, the aspects of variability modeling presented in this chapter can be added
to the requirements management plan if you want to either represent variants or even
develop a true product line. In your requirements management plan, define how you want to
document variability—that is, variation points, variants, and their dependencies—in your
requirements. You can do this for example in text form, as an orthogonal model, or as a feature
model (e.g., Figure 39). What is important here is that you define explicitly how variability is
to be documented (e.g., using feature models) so that you can discuss and agree this with all
stakeholders involved before the project starts.

7.5 Literature for Further Reading

[Bout2011] E. Boutkova: Experience with Variability Management in Requirement
Specifications. In: D.E. Almeida, T. Kishi, C. Schwanninger, I. John, and K. Schmid (eds):
Software Product Lines – 15th International Conference (SPLC), München, 2013, pp. 303-312.

[BoHo2011] E. Boutkova and F. Houdek: Semi-automatic identification of features in
requirement specifications. In: Proceedings of the 19th International Requirements
Engineering Conference, Trento, Italy, September 2011.

[BLP2004] Bühne, S.; Lauenroth, K.; Pohl, K.: Why is it not Sufficient to Model Requirements
Variability with Feature Models. In: Aoyama, M.; Houdek, F.; Shigematsu, T. (eds) Proceedings
of Workshop: Automotive Requirements Engineering (AURE04). IEEE Computer Society
Press, Los Alamitos 2004.

[CHW1998] J. Coplien, D. Hoffmann, and D. Weiss: Commonality and Variability in Software
Engineering. In: IEEE Software, Volume 15, Issue 6, 1998.

[ClNo2007] P. Clements and L. Northrop: Software Product Lines: Practices and Patterns.
Addison Wesley, Boston, 6th Edition, 2007.

[CzEi2000] K. Czarnecki and U.W. Eisenecker: Generative Programming: Methods, Tools, and
Applications. Addison Wesley, 2000.

[KCHN1990] C. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson: Feature-Oriented Domain
Analysis (FODA) - Feasibility Study. Software Engineering Institute, 1990.

[KKLK1998] K. Kang, S. Kim, J. Lee, K. Kim, E. Shin and M. Huh, "FORM: A Feature-Oriented
Reuse Method with Domain-Specific Reference Architectures," Annals of Software
Engineering. vol. 5, 1998, pp. 143–168.

[KLD2002] K. Kang, J. Lee, P. Donohoe: Feature-Oriented Product Line Engineering. IEEE
Software 19(4): 58-65 (2002).

[PBL2005] K. Pohl, G. Böckle, F. van der Linden: Software Product Line Engineering -
Foundations, Principles, and Techniques. Springer, 2005.

144 Variant Management for Requirements

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 144/ 239

[Pohl2010] K. Pohl: Requirements Engineering – Fundamentals, Principles, Techniques.
Springer, 2010.

[SHT2006] P.-Y. Schobbens, P. Heymans, J.C. Trigaux: Feature Diagrams: A Survey and a
Formal Semantics. In: Proceedings of the 14th International Requirements Engineering
Conference (RE’06), September 2006.

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 145/ 239

8 Reporting in Requirements Management

8.1 The Goals and Benefits of Reporting in Requirements
Management

Reports are part of project and organizational controlling. They serve to collect information
about projects or organizational units and to prepare this information appropriately for
certain target groups in order to meet their information needs.

Reporting is defined, for example, as "the creation and dissemination of cross-functional
reports in the sense of an organized compilation of messages exclusively for management"
[Zieg1998]. Another definition emphasizes the preparation and goals of the reporting system:
"It can be understood as all persons, facilities, regulations, data and processes used to create
and distribute reports. Thereby, reports represent summarized information under an
overarching goal, an information purpose." [Küpp2005].

Reports are the specific, technical implementation of views, thus "an extract from an artifact
that contains only the content that is currently of interest" (see Chapter 3).

You can use reports to find out how much work has already been completed in a project and
the quality of this work. This information is used for project controlling and quality assurance.
Specifically, the information supports:

▪ Knowledge about the status of the project progress

▪ Transparency about the project progress for management and the team itself

▪ Early detection of deviations of the actual progress from the target progress

▪ The ability to make reliable, important management decisions as early as possible (e.g.,
whether the delivery date has to be postponed and if so, by how much)

▪ A reduced view of the relevant data that focuses on the essentials

Definition 8-1: Reporting in requirements management is the collection, evaluation, and

presentation of information about requirements or the requirements engineering process. The

information contained in reports serves not only as pure information but also as a basis for

project decisions and for controlling the requirements engineering process.

Definition 8-2: A report is a document that combines one or more views for a specific

stakeholder and purpose.

In connection with requirements management, in this book we are interested primarily in the
contribution the requirements manager makes to reporting. In particular, we demonstrate
how requirements-based project controlling can work—that is, observing the project
progress using the information in the requirements management tool.

Of course, the prerequisite for creating such a report is that the requirements management
tool contains the corresponding information. This information is usually defined in the form
of attributes that have precisely the value list required for reporting.

146 Reporting in Requirements Management

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 146/ 239

Therefore, when you create the attribute schema, you have to think about the reports that are
to be created. Ultimately, the purpose of the attributes lies not in their collection but in their
evaluation.

Both product and process key figures are of interest for reporting. In this context, key figures
are dimensions for both the scope and quality of the product development results that have
already arisen and for the status and quality of the development process: "The purpose of the
Measurement Process is to collect, analyze, and report data relating to the products developed
and processes implemented within the organization, to support effective management of the
processes, and to objectively demonstrate the quality of the products.“ [ISO29148].

One of the difficulties of reporting is that the people who are responsible for entering the
required information in the requirements management tool are not the same people who use
this information. The result is that not only do the project team members have little intrinsic
motivation for entering the data—because they themselves do not benefit from it—but also
that they may even want to sugarcoat the true status of the project to the controlling instance.

The goals and stakeholders of reporting

The primary goal of the further development of online banking is to introduce
the new release properly and without any malfunctions. At an early stage
(with at least three weeks lead time), a number of persons and parties affected
by the development must be informed about which functionality is being
introduced at which point in time. These persons and parties include
management, the data center, the service representatives in the call center,
and the employees in the branches of the bank. At the time promised, the
respective functionality must work without any errors.

What is important in reporting, therefore, is a status tracking for the next
release. This status tracking must detect deviations from the schedule at an
early stage and also ensure that any errors that may have been implemented
are discovered and eliminated by the time of delivery.

Here, delivery reliability and quality are more important than costs and the
scope of delivery. If there were any doubt about a functionality, it would be
omitted rather than being delivered with errors. Furthermore, additional
costs in the form of developer days would be invested rather than postponing
the deadline.

At the same time, Internal Controlling, which controls the flow of costs across
all projects, is keeping an eye on this project and wants to know what costs
are incurred each month. They are particularly interested in whether the
budget granted has been or will be exceeded or not consumed in its entirety.

The project manager is the person who evaluates the status and quality of the
project using the reports and then communicates the conclusions the draw
from the reports to the other stakeholders. The project manager creates an
extensive status report for the Controlling department, for their own
department head, and for the project team.

For the remaining stakeholders, the project manager has set up a newsletter
that provides brief information on a weekly basis about the planned release
date and the functionality that the release will probably contain. This is a
selective extract of the information contained in the extensive status report.

Reporting in Requirements Management 147

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 147/ 239

The data for these reports, which refer to the requirements and the
requirements engineering process, comes from the requirements
management tool that manages the status of the requirements over their
entire lifecycle. Therefore, for the project manager, Peter Reber is the person
who delivers the requirements-based content for the status report. Further
data comes from development and from quality assurance, and these
functions each use different tools for managing their content and for creating
status information.

8.2 Establishing a Reporting System in Requirements
Management

8.2.1 Interfaces

Requirements management is closely integrated with project management, product
management, and quality management. Consequently, these interfaces also exist within the
reporting system. Therefore, it makes sense to coordinate the reporting of these three areas
and their data. Project management will certainly be one of the most important recipients of
reporting on requirements management but quality management must also be considered. In
some companies, where applicable, it may even make sense to generate reports to cover both
requirements management and quality management. This should be checked on an individual
basis.

8.2.2 Contents of a Report

Reports can be sent informally in an email text. However, there are often templates to ensure
that every report has the same structure. This makes reports easy and efficient to read and
create: the same information is always available in the same place on the page. For the author,
it is particularly practical if the report can be generated automatically from the tool in which
the necessary information is managed —that is, it is practical if the requirements management
tool can create status reports.

Reports are important project documents and must therefore be stored such that they can be
traced. Here, all rules of good document management apply. Ideally, the report files should
have meaningful and unique names that also contain the date of creation of the report in a
form that, where alphanumeric sorting is used, leads to files being sorted in chronological
order. A good example of a file name is status_20140817.docx. In some project crises, conflicts,
and disputes, the reports represent valuable information about the progress of the project and
the flow of information—that is, who has informed who about what and when did they do so?

A report not only contains one or more views and key figures—it also documents its own
creation and approval process. The report must also clearly state what it refers to—for
example, the specific project and reporting period.

Sometimes there are different reports about the same content but with a different purpose,
with different titles that provide information about the target group and purpose—for
example, the status report or the management summary.

148 Reporting in Requirements Management

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 148/ 239

Of course, every type of report contains different information, a different view. A report
should contain only the information that the recipient needs to cover their information need.

8.2.2.1 Key Figures in Requirements Management

Key figures or measures are an important part of reports.

"You can’t control what you can’t measure" is a statement by DeMarco [DeMa1982] that is often
quoted. Twenty-seven years later [DeMa2009], DeMarco discusses that not every project
needs the same level of control, that not everything can be controlled, that control is not
everything and not the most important management task. According to DeMarco,
management of human resources is also important, for example. That may be correct, but it is
still true that measurement simplifies control. Specific figures and hard facts supplement or
correct our intuitive impressions in an engineering-based processing and management of a
project. This also applies in particular to the management of requirements and changes to
these requirements, that is, requirements management.

Ebert [Eber2012] defines a measure as:

"(1) A formal, precise, reproducible, objective assignment of a number or symbol to an
object to characterize a specific characteristic.

(2) Mathematical: Figure M of an empirical system C and its relations R in a numerical
system M.

(3) The use (collection, analysis, evaluation) of a measure. Examples: Measure for a
product (for example, errors, duration, deviation from plan) or a process (for example,
error costs, efficiency, effectiveness)".

There is a difference between product key figures and process key figures.

Definition 8-3: The product key figure measures the scope or quality of the product to be created

at a specific point in time.

As we are interested in requirements here, we measure the scope and quality of the product
based on requirements: for example, "Which requirements are planned for the next release?"
or "How many requirements are ready for delivery?".

Definition 8-4: The process key figure measures the progress or quality of the work process.

Here too, we are interested in particular in the requirements perspective, that is, the progress
of the development process in terms of the requirements ("How many requirements have
already been specified completely?") and particularly the progress of the requirements
engineering process ("What proportion of the requirements currently known have already
been checked?").

Ebert [Eber2012] differentiates between three types of measures in requirements
engineering:

▪ "Progress (e.g., the number of requirements that have been specified, realized, or tested)

▪ Requirement quality (e.g., number of errors in the requirements documents)

▪ Model semantics (e.g., degree of coverage of the requirements by the analysis model)"

Reporting in Requirements Management 149

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 149/ 239

The key figure type "model semantics" could also be called the "traceability dimension", as it
measures the completeness of traceability between two different requirements specifications.
If we consider the requirements to be part of the product, this is also a product key figure.

ISO 29148 ([ISO29148]) makes the following statement about requirements key figures:

"Requirements engineering as a discipline benefits from measuring requirements in both the
process and product contexts. More than one measure may be needed to provide the insight into
the information needs for the requirements. Practice has consistently proven various useful
measures, including:

Requirements volatility – In the process context, requirements volatility can indicate an
organization‘s requirements engineering process will not converge a collection of requirements
into a well-formed set. In the product context, a high volatility value can indicate risk early by
stakeholders failing to reach consensus on system requirements, putting significant risk on
subsequent activities in the life cycle.

Other useful requirements measures include:

▪ Requirements trends

▪ Requirements change rate and backlog

▪ Requirements verification

▪ Requirements validation and

▪ TBD and TBR closure progress per plan."

TBD stands for "to be determined" and TBR for "to be resolved" or "to be revised", thereby
identifying open items directly in the requirements specification.

Various authors recommend the following as requirements-based key figures for tracking the
status of the project:

▪ Status of the requirements, which can be represented over the course of time—for
example, the number or proportion of requirements that have been agreed, developed,
or completed, see Figure 42

▪ Change rate = proportion of requirements that have changed in a period, measured over
the total scope of the project; measures the stability of the project and its requirements

▪ Error rate = number of errors per unit (e.g., errors per 1,000 requirements); measures
the result of the requirements inspection or software test

▪ Degree of attribution of the requirements: this key figure measures whether the
requirement attributes have been completely filled; the target value is 100%

▪ Degree of linking between different artifacts

▪ Requirements coverage: percentage of all requirements that have been validated by at
least one test case [SpLi2007]

▪ Test coverage: criterion for measuring the completeness of the tests executed
[SpLi2007]

▪ Velocity = number of requirements that can be implemented in one iteration in the case
of iterative development

▪ Throughput duration of a change request from application to approval

150 Reporting in Requirements Management

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 150/ 239

To determine the key figures above, we need condensed views that calculate totals and
subtotals or percentage proportions.

8.2.2.2 Standard Contents of Reports

The standard contents of regular reports in requirements management—for example, reports
to project management—are the following:

Project name: The report must specify the project to which it refers. (If the report is about an
organizational unit, for example a department, the name of the department is displayed here
instead of a project name.)

Date of report creation: The contents presented in the report change daily or even hourly. It
is therefore important to specify when the data was extracted, that is, the information status
that the report is based on.

Version number: If there are several versions of a report, for example because someone
added something, the new version must have a new version number to ensure that the report
is unique and to ensure better traceability of changes.

Reporting period: Reports can refer to days, weeks, months, years, or any other time interval.
Weekly and monthly reports are the most common, but in critical project phases, reports can
also be generated on a daily or half-day basis. Of course, when interpreting the contents of the
report, it makes a difference whether it relates to what was achieved within a week or a
month.

Creator and recipient(s): A report has a creator (author) and recipient(s) (distribution list).
The recipients can also be distinguished between those who receive it for information only
and those who have to approve it. The names of these persons are usually mentioned on the
report and are thus documented.

Release status: If the report requires a release, this status should be noted here. The report
may contain different contents in different release statuses. Overall status: Right at the
beginning of the report, a reader in a hurry wants an overview of how critical the project is.
Busy managers in particular only read the report if the project is critical. Reports on projects
that are running according to plan do not contain any informational value for the supervisor,
as their support is not required. Traffic light scales with the following meanings for the colors
are popular:

▪ Green: The project is running according to plan. No acute problem, no need for action.

▪ Yellow: The project is not running according to plan. The project team can probably
solve the problems themselves. Action must be taken, however.

▪ Red: The project is at risk and the project team cannot or can no longer solve the
problems themselves. Urgent support is required from above or outside the project, as
well as a decision about, for example, postponing the deadline, increasing the budget,
creating a task force.

Reporting in Requirements Management 151

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 151/ 239

Statuses can also be specified for individual parts of a project (e.g., phases or work packages)
or for individual aspects (e.g., costs, delivery reliability, progress, quality, risk). What is also
interesting, particularly just before the delivery deadline, is which of the planned
requirements are already ready for delivery and which are not. Here you can also document
which milestone has already been reached.

Earned value analysis: The earned value analysis (EVA) is described in more detail in Annex
C. As the basis for the earned value analysis, the report specifies the following key figures for
the project:

▪ Budget (budget at completion/planned costs, PC): The budget available for the entire
project. The budget is specified in € (or another currency) or in time units (person days
or person months). Both details can be specified here, or you can consistently use only
one of the two key figures.

▪ Planned degree of completion: Here, you specify in % the proportion of the project that
should be completed at the current point in time. The figure is calculated as the quotient
of the planned work volume and the total volume of the project. Here, too, you can use a
currency or a time unit. Of course, the work volume and total volume must be measured
in the same unit.

▪ Degree of completion: Here, you specify in % the proportion of the project that is actually
completed at the current point in time.

▪ Costs or effort to date: Here, you specify the costs that have already arisen, in € or in a
time unit.

▪ Cost index: This is the quotient of the costs to date and the total budget of the project in
%.

These key figures tell you what part of the result has already been completed and what
proportion of the budget has been used to do so. You can therefore calculate whether the
project is on schedule and whether work is being performed efficiently—that is, whether the
result created matches the budget consumed. Based on these figures, forecasts can be created
about whether the project can be completed on time and within budget. This provides the
status of the project. For a detailed description of the earned value analysis, see Annex C.
These key figures can also be broken down by work packages or requirements. However, this
is usually not necessary.

Further key figures: Further key figures can describe the quality of the project results,
including the requirements—for example, the number of errors found in the inspection, or the
proportion of requirements for which not all attributes have been maintained yet. Further
quality assurance results are also interesting—for example, the test coverage, density of
errors in the code, and the number of errors or serious errors that are still open. Further
examples for key figures can be found in Section 8.2.1.

Of course, the data required for the reports must be available in the requirements information
model (see Chapter 2) and in the attribute schema (see Chapter 3).

Evaluation and forecasts: In addition to the figures themselves, the report always requires
an evaluation by the creator of the report. The recipients cannot necessarily judge whether a
specific value is acceptable or not for this particular project or for the current point in time.
Therefore, this evaluation is a significant part of the report.

152 Reporting in Requirements Management

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 152/ 239

Forecasts are part of this evaluation. The author of a report should create forecasts so that
every reader does not have to create the forecasts and draw conclusions themselves. For
example, if 25% of the budget has been consumed for a degree of completion of 20% of the
work volume, this requires a justification which is in turn important for a forecast. Is the 5%
overspend due to a one-time issue—for example, unexpected costs that occurred at the
beginning and since then, work has been performed according to plan? In which case, can we
hope for the rest of the project that 10% of the budget leads to a 10% degree of completion,
meaning that at the end, the costs will be 105% of the budget? However, if the cost overspend
can be attributed to the fact that the cost estimation was incorrect, or unforeseen problems
are making the work more difficult, there is a fear that this will also apply for the rest of the
project. The remaining 80% of the project will then consume a further 100% of the budget,
meaning that at the end, the project will cost 125% of the planned budget. In the case of a time
delay, the cause can also indicate whether the time can be recovered or whether the final
deadline has to be postponed and by how much.

Special events: The figures do not indicate whether anything special has occurred during the
reporting period. Special events can be deviations from the plan, risks that have occurred, or
extensive change requests. They should be specified here in text form.

Open items: What is still open? What has to be done next, by whom, and by when? The
information here is usually only the next tasks, unscheduled tasks, and decisions that have to
be taken urgently.

Graphical presentations: In addition to the dry figures, graphical presentations that give an
overview at a glance are popular. Some examples are given below.

A colored presentation of the status as a traffic light: In particular, if the status of multiple
elements (e.g., work packages) is presented, as shown in Figure 40, a graphical traffic light
gives a better overview. Compare the tabular part (a) of Figure 40 with the traffic light
presentation (b).

Reporting in Requirements Management 153

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 153/ 239

Figure 40: Status of the entire project and the requirements as a table (a) and a traffic light (b)

Time diagrams for the costs, the degree of completion, the milestone deadlines, and other
project key figures: If we apply these key figures over time, as shown in Figure 41, we get a
good overview of their development over the period. In turn, this overview allows us to create
forecasts about how the project will develop in the future. A project in which 2% is
continuously processed each week will probably—if there are no radical changes—continue
to progress only 2% per week, despite all hopes for a miracle. If, after the thirteenth project
week, a 26% degree of completion has been achieved with 28% of the budget, the project has
consumed too much of the budget.

154 Reporting in Requirements Management

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 154/ 239

Figure 41: Time diagram for the degree of completion and cost index of a project

Figure 42 shows the development of the status of the requirements over time. This type of
graphic can be created very easily in a spreadsheet program if the data is available in tabular
form. There is a lot of information in this chart: from the total number of requirements (=
overall height of the bar), we can see that in this project, a lot of requirements were elicited in
the first weeks, and only a few new requirements were added later. There is therefore very little
"requirements creep" (= a creeping increase in the scope of the project). Agreement of the
requirements began in calendar week 12 and the required decisions were then taken quickly
within a few weeks. Overall, this diagram shows a very satisfactory project progression.

Reporting in Requirements Management 155

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 155/ 239

Figure 42: Time diagram for the status of the requirements. The horizontal x axis shows the time in calendar weeks,

and the vertical y axis shows the number of requirements. It would also be feasible to show the effort on the y axis, that
is, weight every requirement with its estimated effort.

Contents of the status reports

As already stated, our case study is to have two reports: the status report to
Controlling, the department head, and the project team, and an abbreviated
form for the newsletter to the remaining project stakeholders.

The status report is to be created weekly, and, just before the delivery
deadline for the release, daily if necessary. The most important project
variables are:

▪ Overall status of the release: this is yellow as soon as one of the
requirements probably cannot be delivered; it is set to red if
indispensable requirements cannot be delivered and the go live
deadline therefore has to be postponed

▪ Costs already consumed in the release in € and cost index in %

▪ Degree of completion with respect to the next planned release in %,
also compared with the planned degree of completion

▪ Status of the requirements, presented as a bar chart over time, as
shown in Figure 42

▪ Number of open errors as a measure for the quality, applied over time

▪ Forecasts about delivery reliability and the probable delivery deadline

In addition, the report of course also contains the organizational information,
such as the project name, date, version number, reporting period, creator, and
recipients.

In addition to the organizational data, the newsletter contains the status of the
release, the planned release deadline, the degree of completion compared
with the planned degree of completion, and the forecast for the delivery
deadline.

156 Reporting in Requirements Management

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 156/ 239

Practical tip: Less is more! Keep the number of reports to be created and their contents as low as

possible. Every time a new field is created, this creates work for the author and the recipients. And

too much unnecessary information can even cloud the view of the essentials.

8.2.3 Tips for Developing and Applying Reporting

There are some practical challenges in the development and application of (requirements-
based) reporting:

▪ Focusing on the essentials: Even when the stakeholders and the benefits of reporting are
known, the art is to focus on the essentials. The report definition process in Section 8.2.4
and the GQM method, which we describe in Section 8.2.5, help here.

▪ Reconciliation: The information required for the report must be provided in the
requirements information model (see Chapter 2) and the attribute schema (see Chapter
3). As it is difficult to retrospectively change the information model and attribute
schema, and the introduction of a new attribute requires extensive content
maintenance, the requirements management data models should be clarified at an early
stage, even before the project or work begins. It is helpful to use reference models that
have already been coordinated with each other.

▪ Data collection: The people who have to collect the data are not the same people who
need the information and create or read the report. The data collectors therefore have
no inherent motivation to enter the data. It is therefore even more important that data
collection is integrated into daily work processes well and that it is clear who has to
enter which data and when.

▪ Data quality: The mere presence of attributes does not necessarily mean that all content
is maintained, up to date, and correct. While it does not make sense for an efficient work
process to introduce too many mandatory fields, especially since some information is
not yet available when a requirement is created, for reporting, it would be important
that the attributes are maintained. Missing content leads to incomplete information in
the reports. In Section 8.2.7, we describe how you can ensure the data quality or
consider missing data in the report.

8.2.4 The Report Definition Process

Defining requirements-based reports requires a comparison with the attribute schema (see
Chapter 3). The requirements manager is responsible for this task. If the requirements
manager cannot conduct the comparison themselves, they delegate this task to a suitable
person.

According to ISO 15288 ([ISO 15288], 6.3.7.3 a) 1) to 4)), a measurement and reporting
system is defined in these steps:

1) Description of characteristics of the organization relevant to the measurement

2) Identification and prioritization of information needs

3) Selection and documentation of key figures that meet these information needs

4) Definition of procedures for data collection, analysis, and reporting

Reporting in Requirements Management 157

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 157/ 239

In the following sections we split these four steps up further.

Characteristics of the Organization

Characteristics of the organization that are relevant for reporting are, in particular, the
organizational chart and the requirements information model, including the attribute schema.
The characteristics of the project are also relevant here: scope, schedule, stakeholders.

Identifying Information Needs: Identification of Report Recipients

All stakeholders of the project are potential report recipients. However, report recipients can
also be people who are not (yet) on the stakeholder list.

Identifying Information Needs: Determining Goals and/or Risks in the Project

The report recipients want to use the report to achieve their information goals. These goals
must now be determined, at best by the report recipients themselves. The goals are often to
reduce project risks or to learn about the occurrence of the risk in time to initiate actions.

Examples of goals or risks in product development are:

▪ The planned delivery time or milestone deadlines must be adhered to (goal).

▪ The budget must be adhered to (goal).

▪ Important required functions cannot be provided (risk).

▪ The budget for eliciting the different stakeholder requirements will not be sufficient
(risk).

▪ The required quality cannot be delivered (risk).

Prioritizing Information Needs

The main goal of the project is still product development and not reporting. Therefore, the
report must focus on the most important needs of the most important report recipients.

It is easy to imagine creating a tailor-made, optimized report for the most important report
recipients and sending less important report recipients the same report or an extract thereof,
even if this is not optimal and only just sufficient for their goals.

When prioritizing the report recipients and their information needs, important criteria
include the position of the report recipient in the hierarchy and the criticality of the success
of the information need—that is, how important it is for project success that this information
need is met.

Selecting Key Figures, Defining Report Content

In Section 8.2.2.1 and Section 8.2.2.2, we proposed some key figures and report content that
are recommended in literature and often collected. These can serve as examples and an
(incomplete) checklist. However, the content that should actually be included in a specific
report depends on the information need and other factors. The GQM method (see Section
8.2.5) describes how you get from the information need to the key figure that supports it.

There are two important criteria for selecting the report content and key figures:

1) The information needs are fulfilled.

2) The data is easily available.

158 Reporting in Requirements Management

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 158/ 239

With regard to data availability, ISO 29148 ([ISO29148]) advises focusing on those data and
key figures that are collected anyway, and to use these as a checklist for the data to be
collected: “It is good practice to choose measures for which data are readily available through
the life cycle. The data collection can then be integrated into the requirements related processes
to obtain the data and insight on a regular basis as the requirements engineering proceeds. It is
also good practice to review the analyzed requirements related measures collectively, looking
for predictive trends and projections that can aid risk management.”

Both criteria (information need and data availability) must be weighed up against one
another. The report must contain only data that meets an existing information need. Of course,
it does not make sense to include data in a report simply because it is easily available if nobody
actually needs this data. Conversely, it can be useful not to include key figures in a report, even
though they would be useful, if collecting them is difficult and requires a disproportionate
amount of effort.

When selecting the data to be reported, start with the data that you already have and check
whether it fulfills any information needs. Then check whether every information need is
fulfilled and if not, which data may have to be collected in addition.

It is feasible that in different project phases, different information needs exist or different data
is or should be available.

Defining Procedures for Data Collection, Analysis, and Reporting

Data collection should ideally take place during normal project work, should be integrated in
the normal work processes, and should not cause any additional effort. We will look at the
procedure for collecting data later on in Section 8.2.6.

For the procedure for data analysis and reporting, you have to clarify the following:

▪ Generation cycle: How often must the report be created? There may be specific points
in time at which the status of the project must be determined, for example, the
milestones.

▪ Tools: What tools are used to create the report?

▪ Report creator: Who creates the report? In principle, multiple persons involved in the
requirements management process can provide content for a report, in the same way
that multiple persons involved in the process can receive reports.

▪ Report form: In what form will the report be created (format and template) and how
will it be distributed?

Reporting can be implemented manually by a defined report creator, by the requirements
manager, or automatically by a requirements management tool. The type of implementation
depends on the maturity of the tool environment, the extent to which requirements
management has been established in the company, and on the importance of reporting in the
company. The automatic generation of reports has a special role particularly for extensive
reports and reports that have to be generated regularly and for extensive data. This is because
automatic generation significantly reduces the effort involved in generating the reports and
the probability of errors in the reports.

As well as being influenced by the tools, the presentation of the report is also influenced by
the standards, customs, and expectations that prevail in the respective company.

Reporting in Requirements Management 159

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 159/ 239

8.2.5 Goal, Question, Metric Method

In reporting, the "goal, question, metric" (GQM) method [BaWe1984], [Basi1992], [BCR] is one
potential method for ensuring that no unnecessary, or, to be more precise, only goal-oriented
key figures are defined for reports or report content. GQM is a systematic procedure for
identifying such key figures. A suitable key figure is identified by answering the following
questions:

▪ Which goal is to be achieved by the measurement? (Goal)

▪ What should be measured and which questions should the measurement answer?
(Question)

▪ Which key figure(s) can describe the necessary characteristics? (Metric)

When applying the GQM method to reporting, we start with the report recipients and their
information need (= goal). Which question should the report answer and which key figure is
suitable for this?

GQM for delivery reliability

Goal: In our example project, we are particularly interested in the delivery
reliability.

Question: When will the new release go live?

Metric: The probable delivery deadline is the key figure that is particularly
relevant here. It is determined via the earned value analysis, which in turn
requires the collection of multiple further key figures.

It is also feasible that one information need leads to multiple questions, or that multiple key
figures are needed to answer one question.

If, for example, the goal is a high level of customer satisfaction, customer satisfaction arises
not through one single factor, but probably through a mix of hard and soft factors. Figure 43
shows a more complex example in which the key figures initially derived are in turn
interpreted as a goal and analyzed further.

160 Reporting in Requirements Management

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 160/ 239

Figure 43: Example for the application of the GQM method

8.2.6 Data Collection

The collection of data for reporting covers the following tasks ([ISO15288], 6.3.7.3 b)):

1) Integrate procedures for data creation, collection, analysis, and reporting into the relevant
processes: the description of the work processes must include a definition of who collects
which data and when for the report. This applies, amongst other things, for the
requirements engineering process (see Chapter 9). The earliest point in time for data
collection is of course when the data arises—for example, effort estimations or actual
efforts. It may, however, also be the case that at certain points in time, data is imported or
aggregated from another system because it already exists there. The time for data analysis
and reporting must also be defined to ensure that the stakeholders receive up-to-date and
correct information regularly. The check of the data quality, which, for requirements-
based data, is the responsibility of the requirements manager, must also be planned. Here,
the requirements manager checks the data for completeness, plausibility, and quality.

2) Collect, save, and check data: as planned under point (1), the data is then collected and the
quality of the data is checked. If applicable, the requirements manager can or should
ensure that this actually happens. If the quality is not correct, the requirements manager
ensures that the knowledge owners enter their knowledge in the requirements
management tool and thus make it available for reporting.

Reporting in Requirements Management 161

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 161/ 239

3) Analyze data and create information: as planned under point (1), at the defined points in
time, the views and reports are created.

4) Document results and communicate them to the users: the reports are documented (e.g.,
stored as a file with a timestamp) and distributed to the stakeholders concerned. The
documentation can be helpful if you want to track the progression of the project status and
the level of knowledge at a later point in time.

8.2.7 Checking the Data Quality

The report recipient receives the available information in the form of reports which they can
then use to derive actions and/or decisions. The data quality should therefore be correct,
because otherwise, incorrect data quality could result in incorrect decisions being taken. The
persons involved should exchange information to increase the quality of reporting. Both the
report creator and the report recipient are responsible for this information exchange.

"Information and reporting should not take place exclusively from employees to the project
manager. The project manager should also make his knowledge and his information available
to the employees involved. Lack of information leads not only to uncoordinated activities, but
also has a negative effect on employee motivation" [KuSt2001].

The requirements manager is responsible for checking the data quality. Two criteria must be
investigated: completeness and quality.

It is relatively easy to check the completeness of the data. For example, if all the attributes
with the name "Effort" have been entered, this data is complete. If filtering or sorting by this
attribute leads to the discovery of requirements for which this attribute is empty, the data is
incomplete. It may of course be correct for individual items of data to be missing. For example,
a requirement that is still being clarified cannot contain a value in the field "Actual effort"
because no effort has been spent yet. Alternatively, when determining the degree of
completion of the current release, the status of the requirements that have been deferred for
later releases is completely irrelevant. Therefore, criteria must be defined for the
completeness of the data.

It is more difficult to evaluate the quality of the content. Criteria must also be defined for this.
Sometimes, these criteria are already in the attribute schema which, for example, can prohibit
implausible or contradictory attribute combinations (see Chapter 3). In this case, it is not
possible to enter implausible data. However, it is sometimes not technically feasible to prevent
such attribute combinations on collection. You then have to identify them using suitable views.

If instances of missing or implausible data are found, the question arises as to who should or
can correct this data and by when it must be corrected. In principle, the attribute owner is
responsible for either maintaining the content of the attributes themselves, or for ensuring
that someone else does so. The urgency depends on the urgency of the information need. A
list of data can be entered retrospectively quite quickly; alternatively, the instruction can be
given that the next time a requirement is edited, the data is to be corrected.

162 Reporting in Requirements Management

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 162/ 239

8.3 The Risks and Problems of Using Reporting

In practice, there are practical difficulties in gathering and evaluating data that result in
reports not adequately reflecting reality. As reports are intended to lead to important
management decisions, an incomplete or even deliberately embellished report can have far-
reaching consequences.

Evaluation of Data: Condensed Representation of Reality

A report is always a highly condensed model of reality in which similar things are grouped
into categories and insignificant details are omitted. It is very difficult to do this in such a way
that any future question can be answered well at any time.

This is why the superficiality of a report must always be taken into account. In particular, it is
important to avoid drawing false conclusions from the data available. For example, a report
that shows 99% traceability for all project requirements does not yet allow a statement on the
progress of the project or the quality of the relationships. Requirements that have not yet been
linked could be the most important or most time-consuming requirements that contribute
significantly to the success of a project. When reducing the complexity of key figures, you
should always be aware of this problem. It is often the case that only very rough statements
and conclusions are possible.

If really reliable data is required, the question must be asked correctly and the correct key
figure evaluated. The GQM method (see Section 8.2.5) can support the derivation of the
correct key figure. Further data may have to be collected.

Data Quality

Missing data is usually easy to detect. It is not as easy to evaluate the quality of the data: does
the data correspond to reality? Is it up to date? Does it measure exactly what it should, for
example, does the attribute "Effort" only measure the implementation effort, although the test
effort should also be taken into account? Is the criticality actually the result of an expert survey
or has it been set provisionally?

Undiscovered but also known shortcomings in data quality lead to the report not correctly
reflecting the reality of the project. It is difficult to make the right management decisions
based on this incorrect data. And even if the lack of data quality is known, decisions are
difficult to make.

Poor data quality often results from the fact that the parties involved neglect data
maintenance because they themselves have little benefit from it. Conversely, sometimes they
may even be interested in embellishing the data, or at least in saving time on data maintenance
by not performing careful analyses and instead hastily entering data that seems plausible.

However, poor data quality can also result from the fact that not everyone involved has the
same vision. In agile development (see Chapter 10), the "definition of done" is an important
topic of discussion. The point at which a requirement is considered completed must be clearly
defined. Possible criteria for the implementation of a requirement include the following: the
code has been created, unit tests have been created and successfully run, the documentation
has been adapted and the code convention followed.

Quality defects are difficult to detect if the data has been intentionally poorly maintained. The
person maintaining the data ensures that even if the data is not correct, it is plausible.

Reporting in Requirements Management 163

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 163/ 239

The data collection and data analysis processes should therefore include steps for quality
assurance. Diverse plausibility checks are feasible in which different data is compared. With
the earned value analysis, where the project progress and budget consumption are compared
with one another, data collection problems can also be identified in addition to real project
problems. Therefore, if the project progress and budget consumption do not match, the first
step would be to check that the data is correct. Other data can also be cross-checked
accordingly—for example, the status of the requirements can be compared with the date of
the elicitation of the requirements. If a requirement was elicited a long time ago but still has
an early status, then discussion of this requirement has been forgotten or it is simply the case
that the status has not been updated according to the processing status.

Evaluating the Performance of Specific Employees

In Germany, employees and their data enjoy legal protection. In particular, measurement of
the performance of individual employees must be avoided. If, despite this, a report is still to
be created—for example, to collect information about employees' workloads so that work can
be redistributed if necessary—any such report must be agreed with the Works Council.

It is therefore better to collect data on a requirement, project, or team basis. Personal data
should only be collected when this is absolutely necessary. This is not usually the case.

Data Protection Regulations

Applicable general and company-specific data protection regulations must be followed when
defining and implementing the reporting system. If personal data is provided by participants
and further communicated within the company in the form of reports without the knowledge
of the participants, this can lead to problems. In this context, it is important to clearly agree
with the data creators who receives which data within the scope of the decisions to be made.
In general, personal and person-related data should be used sparingly or should not be
entered in the first place. When defining views, you should also ensure that no statements
about individual persons can be made so as not to unintentionally violate data protection
regulations.

Inflationary Reporting

If the volume of report information increases constantly, this might also lead to a situation
where the report recipients are unable to process this data due to time constraints and
important decisions can no longer be made on a sound basis.

Therefore, less is more! Focus on the information that is really necessary. This can also mean
that different target groups receive different reports in which only certain aspects are
presented, or are presented at various levels of detail.

8.4 Content for the Requirements Management Plan

The requirements management plan defines which (requirements-based) reports are to be
created and when they are to be created. For each report, the report recipient and the goal of
the report are documented, for example in tabular form. The derivation of report content from
goals can be represented graphically as a goal, question, metric tree (as shown in Figure 43).
The requirements management plan also defines what content the report contains and how
this content can be determined or calculated from which attributes, and how the content is
presented (e.g., the graphical form of presentation). The specification can also be documented
in the form of a report template or view.

164 Reporting in Requirements Management

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 164/ 239

8.5 Literature for Further Reading

[DeMa1982] Tom DeMarco: Controlling Software Projects: Management, Measurement, and
Estimation. Prentice Hall/Yourdon Press, 1982.

Earned value analysis for beginners:

[Wann2013a] Roland Wanner: Earned Value Management: The Most Important Methods and
Tools for an Effective Project Control. CreateSpace Independent Publishing Platform, 2013.

Earned value analysis for experts:

[Wann2013b] Roland Wanner: Earned Value Management: So machen Sie Ihr
Projektcontrolling noch effektiver. CreateSpace Independent Publishing Platform, 3rd edition,
2013 (available in German only).

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 165/ 239

9 Managing Requirements Engineering
Processes

9.1 Requirements Engineering as a Process

A process consists of interdependent activities which each transform input into output
[ISO9000]. Each activity is uniquely assigned to the organizational entity responsible for it,
for example, a role. As part of the development process, requirements engineering and
requirements management can be seen as processes.

The requirements engineering process is understood as a systematic process for developing
requirements via an iterative, cooperative process of eliciting, documenting, validating,
negotiating, and managing requirements (according to [LoKa1995]).

This requirements engineering process includes the following four types of activities
[IREB2015]:

▪ Eliciting requirements

▪ Documenting requirements

▪ Validating and negotiating requirements

▪ Managing requirements

In each project, there are several elicitation activities such as workshops and meetings with
stakeholders, document analysis, analysis of the legacy system, and so on. There are also
multiple individual activities for the other types of requirements engineering activities.

The requirements engineering process uses stakeholders' needs and ideas as input
information. In addition, the status quo before the project start (e.g., the legacy system) and
competing products also play a role. The result of the requirements engineering process is a
validated, conflict-free, consistent, prioritized, quality-assured requirements specification
that can serve as a reliable basis for further project work.

In general, the four activity types (whose procedure and methods are defined in the CPRE
Foundation Level [IREB2015]) have the input and results outlined below, which can of course
look different, especially if company-specific requirements or standards have to be met, or
according to the given constraints (see Table 8).

These four types of activities must always be performed, regardless of whether they are
explicitly documented or implicit. They do not have to be and, in fact, cannot be performed
sequentially; instead, they can run iteratively, incrementally, or in parallel. Requirements are
always elicited in some way, even if this is through informal discussions. There is usually also
documentation—in the worst case, chronological documentation or documentation spread
over numerous discussion notes. Documenting requirements implicitly only would of course
not conform to the recommendations of the IREB. Standards and company guidelines require
different implementation of these activities and define different guidelines with regard to the
documents to be created.

166 Management of Requirements Engineering Processes

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 166/ 239

Activity Type Input Result

Eliciting requirements Stakeholders and their needs and
ideas

If applicable: an existing legacy
system and its documentation;
competitor products

Oral and written requirements
including the system vision

Documenting
requirements

Oral and written requirements Written requirements
specification (textual or model-
based or both)

Validating and
negotiating
requirements

Written requirements
specification

A validated, conflict-free,
consistent, prioritized, quality-
assured requirements
specification

Managing
requirements

Written requirements
specification + change requests

A constantly up-to-date, validated,
conflict-free, consistent,
prioritized, quality-assured
requirements specification

Preparation of requirements for
individual stakeholder groups

 Table 8: Four activity types for requirements engineering, as well as their input and output (result)

The results of the requirements engineering process must satisfy quality criteria in three
independent dimensions: specification, representation, and agreement [Pohl1994].
Requirements should become more mature over time within these dimensions, although
there does not have to be a simultaneous, constant increase in all dimensions. For example,
growth in the specification dimension (e.g., formalization) can lead to a regression in the
agreement dimension because new contradictions have come to light due to the formalization.

▪ Specification: This dimension describes the completeness of the specification or the
completeness of the understanding of the requirements. At the beginning of the
requirements engineering process, requirements are vague and unclear (opaque). As
the process progresses, requirements become more complete in the sense of a thorough
coverage of the problem to be solved and a description that is detailed enough to be
properly understood. Various standards provide guidelines as to which conditions must
be met by the requirements in order for them to be considered complete. However, it is
not possible to prove the completeness of requirements.

▪ Presentation: Here, the scale varies from informal to formal. Informal presentation
includes sketches, free text, and prototypes. Semi-formal presentation includes
graphical models such as class diagrams, state machines, use case diagrams, or data flow
diagrams. Use cases presented in tabular form, which strictly follow a given syntactic
structure, are also semi-formal. Formal specifications describe requirements completely
uniquely using logic languages and formal semantics. Preparation of a formal
specification usually begins with informal forms of presentation.

▪ Agreement: Establishing agreement is another goal during the requirements
engineering process. In the agreement dimension, you move from the personal view to
a common view of the requirements.

Management of Requirements Engineering Processes 167

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 167/ 239

The requirements specification has to be optimized in all three dimensions during the
requirements engineering process. Here, elicitation activities mainly contribute to
improvement in the specification dimension, documentation activities to improvement in the
presentation dimension, and validation and negotiation activities to improvement in the
agreement dimension. Requirements management aims to maintain the quality level in all
three dimensions, even when changes occur.

Various standards (see Section 1.5) propose how the requirements engineering process or the
development process can be designed. However, these are merely blueprints that have to be
adapted to the circumstances in the respective company. Through tailoring, process
parameters, roles, activities, and result types can be adapted to specific needs.

Specifications for the requirements engineering process in the example
bank

As a certified CPRE professional, Peter Reber naturally complies with the IREB
standard. However, this standard does not specify how the requirements
engineering process is to be performed in detail. In fact, quite the opposite is
true: this standard shows the wide range of selection options and supports
tailoring of the process.

The four activity types are mandatory:
1. Eliciting requirements

2. Documenting requirements

3. Validating and negotiating requirements

4. Managing requirements

The methods that can be used to perform these activities and the criteria for
selecting the correct method are described in the CPRE Foundation Level and
the respective Advanced Level. We have already defined the requirements
landscape for the case study project in this book.

What still has to be defined is who performs the planned activities how and in
what order. We discuss these parameters of the requirements engineering
process in the following Section 9.2.

168 Management of Requirements Engineering Processes

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 168/ 239

9.2 Parameters of the Requirements Engineering Process

Even if the same elicitation, agreement, and documentation methods are used, the
requirements engineering process can vary greatly and must be adapted in particular to the
given constraints, such as the project size and the skills of the persons involved. Despite the
variety of requirements engineering processes that exist in different process models, there
are only a certain number of process parameters that can be changed when selecting or
adjusting the requirements engineering process:

▪ Timing of the elicitation (upfront or iterative)

▪ Level of detail of the documentation, that is, the lowest level of detail used for the
specification (heavyweight versus lightweight specification)

▪ Incorporation of changes, in particular: change request versus product backlog

▪ Allocation of responsibility

These parameters should be adjusted to the given constraints. Such constraints are:

▪ The size of the project

▪ Is it a new implementation or a small enhancement, improvement, or variation to an
existing, mature system or product?

▪ Is the system security-critical?

▪ Was a fixed price agreed or not?

▪ Is there a stable team that has been working together for years?

▪ Availability of people and their qualifications

9.2.1 Timing of the Elicitation (Upfront or Iterative)

Requirements can either be elicited completely at the beginning of the project (upfront) or
iteratively (iterative requirements engineering): in the first case (upfront), a requirements
specification (e.g., a customer requirements specification) is created at the beginning of the
project, describing the planned project scope in its entirety, at least at the uppermost level of
detail of the requirements. With iterative requirements engineering, the aim is not to define
the requirements, or even just the project scope, completely at the beginning, but rather to
consider the requirements documentation (e.g., the product backlog) as a preliminary list.
Requirements can be added or changed at any time, even during implementation. Caution:
there is a difference between iterative requirements engineering and iterative development.
It is therefore conceivable to first create a complete requirements specification upfront and
subsequently implement the requirements through iterative development.

Management of Requirements Engineering Processes 169

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 169/ 239

If the project is a small enhancement, improvement, or variation of an existing, mature system
or product, or a small project, then it is to be expected that stable requirements can be defined
for the entire project with few surprises expected. This is where upfront requirements
elicitation is possible and useful.

However, if the project is very innovative with many uncertainties, is a large project, is in a
volatile environment, has changing, undecided or conflicting stakeholders, or there are other
risk factors that make a reliable upfront specification impossible, iterative requirements
engineering serves to reduce risk. However, iterative requirements engineering requires
regular participation of at least the most important stakeholders. If this is not possible, and
the only opportunity is a one-time elicitation workshop or an initial elicitation phase, then the
requirements must be elicited upfront. An upfront specification is also required if the
specification has to be created under more difficult conditions, if the project has a fixed price
(meaning that the project scope has to be defined early), the system is a security-critical
system for which a security analysis has to be performed in the overall view, or a technology
is used that is difficult to change and enhance, that is, it is difficult to consider requirements
that arise spontaneously.

9.2.2 Level of Detail of Requirements Documentation

The level of detail of the documentation or specification can vary between heavyweight and
lightweight requirements: the heavyweight specification describes all requirements in detail
at multiple levels of detail, including all their attributes and traceability relationships. This
makes the specification very comprehensive. In agile development, it is common to create
lightweight specifications with only a few levels of detail. In this case, requirements are
specified only as comprehensively as necessary and not earlier than necessary. The point in
time at which certain information is required depends on the process model. What is needed
depends on the stakeholders, their needs, and background. A project-specific stakeholder
analysis helps to define how detailed the requirements specification must be. Among other
things, the purpose of a specification is to enable the developer to understand what
stakeholders want. With a lightweight specification, details of the implementation are left to
the developer (especially if he is very familiar with the domain), are discussed verbally
without being documented, or are refined using a prototype. The lightweight requirements
specification describes requirements as user stories, for example. Requirements are only
specified in detail when their implementation is about to begin. Even though upfront
specification is usually heavyweight (e.g., in the waterfall model and V-Modell XT) and
iterative specification is usually lightweight (as in scrum and other agile methods, see Chapter
10), the two parameters timing and level of detail are independent of one another. It is
possible to create both a lightweight specification upfront and a heavyweight one iteratively
(as in the Rational Unified Process).

Whether the specification is lightweight or heavyweight depends less on the project size or
the type of contract, and above all, more on the information and documentation need of the
specific project and its stakeholders.

170 Management of Requirements Engineering Processes

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 170/ 239

Due to statutory requirements alone, security-critical systems are usually specified in
heavyweight form and completely. In principle, a lightweight specification saves unnecessary
effort if the information that would have been documented additionally in the heavyweight
specification is available to all stakeholders in an undocumented form—for example, in the
case of small teams or teams that have been working together for a long time, developers with
very good knowledge of the domain and the customer, and for the further development of an
existing system.

However, the lightweight method can also be used if it is technically easy to create and change
a prototype quickly and the requirements are refined based on the prototype.

The level of detail is defined in the requirements information model (Chapter 2).

9.2.3 Change Management: Incorporation of Changes (Change
Request versus Product Backlog)

Requirements change during a project. Some requirements engineering processes integrate
new or changed requirements into the requirements specification and development process
as change requests. The projects concerned are usually projects with a fixed price and upfront
requirements specification, which means that from an organizational and legal point of view,
the definition of the project scope and the requirements elicitation are completed at a certain
point in time. From a legal perspective, subsequent changes are contractual changes. In legal
terms, a change request means a new contract. Normally, the project's contract already
specifies how change requests are to be handled. They usually go through a simplified
approval procedure with the following steps: analysis (of the requirements and their
benefits), impact analysis (i.e., analysis of changes to the system, their costs and risks),
decision by the Change Control Board, and then implementation. A change request is often
described using a change request template that assigns a unique number and title to the
change request, describes the problem to be solved and the proposed solution, quantifies
costs, benefits, and risks, and manages the status (requested, accepted, rejected, postponed,
implemented) (see Chapter 5).

In iterative requirements engineering, however, requirements are collected in the product
backlog and all requirements—old and new—are treated equally. This is made possible by
the fact that there is never a commitment to a defined system scope. The advantage of this
procedure lies in the flexibility. New, important requirements can be integrated into the
project easily. However, this flexibility also has the disadvantage that it is ultimately difficult
to define the exact delivery scope. The number of requirements in the product backlog can
increase constantly; in the worst case, more quickly than the requirements are implemented.

Nevertheless, it is not mandatory for an upfront requirements specification to treat later
requirements as change requests. It would be conceivable to adjust the requirements
specification created upfront later without recording and approving changes as change
requests. Changes to the requirements artifacts must of course be documented and traceable.

Conversely, an approval for new requirements could also be demanded in iterative
requirements engineering. The primary decisive factor here is the form of contract. In the case
of a fixed price contract, a new requirement can only be integrated into the project if both
contracting parties agree, which requires a more or less extensive approval process. In other
cases, how changes are handled is a matter for agreement between the client and the
contractor.

Management of Requirements Engineering Processes 171

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 171/ 239

From the perspective of requirements management, it definitely makes sense to integrate the
change requests into the existing requirements specification sooner or later so that an up-to-
date specification of the planned system is available at any point in time.

There should therefore not be two separate specifications—for example, the requirements
specification with the status at the start of the project plus a list of chronologically sorted
change requests. This type of presentation does not fulfill the modifiability requirement for
requirements specifications. The main question from the point of view of requirements
engineering is therefore who integrates change requests into the specification, when do they
do this, and in what form? Good coordination between project management and requirements
management is definitely required. This allows requirements management to provide the
decision makers with important information about the probable impact of a change (with
regard to impact analyses, see Section 6.5.2 on the usage strategy for traceability).

9.2.4 Allocation of Responsibility

A single role (for example, the requirements manager) can be responsible for requirements
engineering in the sense that this role plans, controls, and improves the requirements
engineering process. The role either performs the activities involved in the requirements
engineering process or ensures that they are performed by someone else. However, there can
also be an entire team or several roles responsible for requirements engineering, either for
different activities or different content (e.g., functional requirements versus usability
requirements). Requirements engineering can also be closely integrated into the development
process without a separate requirements engineering process or a requirements engineering
role existing. In this case, the development team performs the requirements engineering
activities—that is, the team members elicit, document, check, and manage requirements.

The bigger the project, the more it makes sense to define a separate requirements manager
role to monitor this area of activity in the project. However, this role can also be defined for
small projects, in which case it is not a full-time role. The requirements manager should be
the person who is most familiar with requirements engineering and requirements
management. In particular, this person must have very good communication skills and must
also be in constant contact with all stakeholders. In addition to methodological requirements
engineering and requirements management knowledge and technical knowledge, which the
requirements engineer needs, the requirements manager also needs management skills to be
able to set up, manage, and monitor the requirements engineering process.

Parameters of the requirements engineering process in the example
bank

In our case study, the requirements are elicited upfront, as the project is a
further development of software that the team knows well. It is therefore very
feasible to elicit and describe the requirements at the beginning. In contrast,
development will take place iteratively.

As defined in Chapter 2, the requirements are described at multiple levels of
detail. This supports a detailed security analysis and a complete
documentation of the system for the future.

Change management: the project is an in-house project with a fixed budget.
However, as there is no fixed price contract, the content—if not the project
scope—allows some flexibility in principle.

172 Management of Requirements Engineering Processes

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 172/ 239

When new, important requirements arise, these should be included in the
project and other, less important requirements deferred. This is particularly
true for changes in law, which have to be considered at short notice. However,
these changes to requirements must be checked properly and executed in a
controlled manner.

This requires a documented change process in which, during the impact
analysis, not only do the implementation costs have to be estimated, but the
security team must also submit a risk assessment for the IT security, the
business analysts must submit a risk assessment for the business processes,
and the usability expert must submit a risk assessment with regard to
accessibility. Based on the evaluations, a Change Control Board ultimately
decides whether the change to the requirement is accepted, rejected, or
deferred.

The responsibilities were defined in Chapter 1: as the requirements manager,
Peter Reber plans and monitors the requirements engineering process, while
multiple experts perform requirements engineering—that is, they elicit,
document, and agree requirements. Several external business analysts
analyze the business processes, a team of IT security experts conducts risk
analyses, the usability expert designs alternative interface designs and
improves accessibility, and a moderator holds an ideas workshop with the
Customer Advisory Board.

9.3 Documenting the Requirements Engineering Process

The requirements engineering process consists of numerous activities of the four types
mentioned above, such as elicitation workshops, document analyses, specification reviews,
etc. Many of these activities are planned in the form of meetings or workshops, as they involve
multiple persons. The order of these activities results from the selection of the process
parameters, for example, whether requirements are elicited and specified upfront, or how
changes to requirements are handled (see Section 9.2).

The following applies regardless of whether you are defining a generic requirements
engineering process that is to apply as a company specification for all projects, or whether you
are planning the requirements engineering process for a specific project.

The activities and their sequence can be presented as a UML activity diagram. The activity
diagram can also show the assignment of activities to roles. You will be familiar with this
notation from the CPRE Foundation Level ([PoRu2011].

The assignment of responsibilities for activities to roles can also be presented in more detail
using a RACI matrix like the following. RACI stands for:

▪ R = responsible = responsible for the execution

▪ A = accountable = authorizes, for example, the activity and its budget

▪ C = consulted = (will be) consulted, especially in terms of technical, content-related
responsibility

▪ I = informed = to be informed, i.e., the person is to be informed about the results

Management of Requirements Engineering Processes 173

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 173/ 239

The following table shows an example of an excerpt from a RACI matrix.

Activity Requirements
Manager

Busines
s
Analyst

IT Security
Expert

Usability
Expert

Moderato
r

Custom
er
Advisor
y Board

Analysis of
business
processes

A, I R I C, I I

Risk analysis A, I C, I R C, I

Interface
design

A C C R

Ideas workshop A, I I I I R C

…

Table 9: Example of a RACI matrix for requirements engineering

The requirements engineering process

Table 9 shows an excerpt from the RACI matrix for our case study. The
activities presented here all belong to the activity type requirements
elicitation. Elicitation of the requirements probably also includes further
activities not specified in more detail here. There are also activities of the type
requirements documentation, validation and negotiation of requirements, and
requirements management. However, our goal here is not to plan the
requirements engineering process for the entire project completely, but rather
to illustrate the corresponding methods of presentation.

174 Management of Requirements Engineering Processes

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 174/ 239

Figure 44: Activity diagram (excerpt) for the requirements engineering process for the case study

Figure 44 presents the same excerpt from the requirements engineering
process as an activity diagram. How the two forms of notation differ and
supplement each other is clear:

The RACI matrix can present the responsibility of the different roles for the
activities in more detail, whereas in the activity diagram, an activity is usually
only in one swim lane: in the lane that belongs to the role responsible. Anyone
else involved in the activity is not shown.

In contrast, the activity diagram also documents dependencies between the
activities, for example, the order of the activities, such as "The risk analysis
takes place after the business process analysis (because it builds on the results
of the business process analysis)", or "Risk analysis and interface design can
take place in parallel".

The Gantt diagram in Figure 45 shows the time progression in even more
detail. The person responsible is defined in the column "Resp.", and the other
RACI responsibilities could also be presented here. For each activity, the time
progression is shown horizontally as a row, with each calendar week (CW) in
which work is performed on this activity shown in black. Thus, the duration
and repeated work can be presented in more detail than in the activity
diagram. In the Gantt diagram, however, the presentation of dependency
relationships between the activities is not so clear, even though arrows are
used to represent these.

Management of Requirements Engineering Processes 175

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 175/ 239

Figure 45: Gantt diagram (example). BA stands for business analyst, SA for security analyst (or IT

security expert), UE for usability expert, Mod. for moderator.

The three types of presentation therefore complement each other well. They
can thus be used together. However, it is more efficient to concentrate on the
least number of forms of presentation as possible. It is also feasible to use the
Gantt diagram for the rough planning of the work packages, and to use one
activity diagram for the fine planning of each work package.

To manage dates and budgets quantitatively, the requirements engineering process can also
be presented as a project plan. Other documents that can represent and support the
requirements engineering process are: checklists, templates, sample documents and
guidelines for the execution of individual activities.

If many people are involved in the requirements engineering process, it also makes sense to
support this process with a tool. All workflow management systems in the broadest sense are
suitable for this.

9.4 Monitoring and Controlling the Requirements Engineering
Process

Monitoring the requirements engineering process means ensuring that all activities are
performed and the defined results are delivered on time and that the activities remain within
budget. Reports that regularly record dates, budget consumed, status, and degree of
completion of the requirements engineering process and its individual activities and compare
the actual values with the target values from planning are helpful for this (see Chapter 8).

Controlling the requirements engineering process means executing it according to the plan
or, if the process deviates from the plan, taking corrective action. For example, if it becomes
apparent that a deadline or budget cannot be met, the consequences for the overall project
must be determined and—if appropriate—countermeasures taken. There are two alternative
options for correcting the situation: you can adjust the plan to the actual progress, or adjust
the progress to the plan. The former is easier, but often difficult for a project with a binding
end date and budget. To adjust the ongoing process to the plan, planned activities may have
to be omitted, brought forward, or performed with less effort. Careful trade-offs must be made
where they cause the least damage: for example, individual stakeholder groups are not
interviewed, individual open questions are not clarified, details are not specified, unimportant
change requests are rejected, and so on. The prerequisite for setting such a focus is, of course,
that the requirements have been prioritized (see Chapter 4). It is important to consider the
risk: does the benefit of the savings outweigh the possible damage?

176 Management of Requirements Engineering Processes

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 176/ 239

Practical tip: If the defined requirements engineering process cannot be adhered to, there can be

various causes. For example, the employees may not know the process or may not have

understood it correctly. It may also be the case that the process does not describe the optimal

working method and is therefore not adhered to. There may even be resistance to new or certain

working methods that is causing the process not to be adhered to. As each of these causes requires

a different measure to correct it, it is essential to find out why the process is not being put into

practice.

9.5 Process Improvement for the Requirements Engineering
Process

A process can always be improved further. The CMMI (capability maturity model integration)
maturity model requires that a mature development process plans activities for continuous
improvement of the work processes. The basis for this is an analysis of the actual process,
referred to as an evaluation or audit, that systematically investigates how good the process
currently is, where it is already good, and where there is potential for improvement. In an
audit, the current process is usually compared to a reference process (e.g., prescribed by a
standard) and process key figures are collected (see Section 8.2.2.1). The basis for a process
analysis should always be objective, measurable criteria.

When performing an audit, you go through the following steps, for example:

1. Recognize the need for an audit

2. Plan the audit, for example, the purpose and goal, the scope (Process? Product?
Which?), the team, the criteria, the resources, and deadlines

3. Perform the audit and document the results

4. Evaluate the results: strengths and weaknesses, required improvements, and the
most urgent measures

5. Implement the measures

6. Measure the improvements

Process improvements can be performed either abruptly—a process rearrangement—or
continuously. A process rearrangement changes many activities and parameters of the
process at the same time. This has the advantage that it is possible to achieve a significant
increase in efficiency, which, however, usually only occurs after all participants have become
accustomed to the new process. However, there is also the risk that the new process will not
prove its worth and will reduce efficiency. Resetting will then again involve great effort.

Continuous process improvement avoids this risk and leads to short-term (mostly small)
improvements with little effort. According to the principle of continuous process
improvement (CPI), processes are optimized gradually by repeating the following four
activities (PDCA) of the Deming cycle [Demi1982] iteratively:

▪ Plan: The actual process and, in particular, the need for improvement are analyzed.
Based on this, the desired process is planned and documented.

▪ Do: Improvement actions are developed and tested in a pilot project and accompanied
by measurements.

Management of Requirements Engineering Processes 177

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 177/ 239

▪ Check: A check determines whether the actions have brought about the desired
improvement. The actual values are compared with the planned values.

▪ Act: Based on the results of the actual/plan comparison, improvement actions are
introduced continuously or, if necessary, new actions are planned. The implementation
of the actions is monitored and accompanied by measurements.

The actual and target process are characterized using measured quantities (see Chapter 8).
Such measured quantities can be:

▪ The proportion of the project budget invested in requirements engineering. Both too
much and too little can be questionable. Normally it is 10-30% of the project budget.

▪ The number of requirements still to be implemented (weighted according to expected
effort) measures the work that is still to be completed up to the end of the project.

▪ Number of requirements (or rather, number weighted by implementation effort)
implemented per time unit. Together with effort estimations for the requirements still to
be implemented, forecasts can thus be made about the remaining duration of the project.

▪ Change rate of the requirements: A rate of 1-5% of the requirements per month
(measured in effort) and, in the worst case, 30-50% over a project duration spanning
multiple years is considered normal [Eber2012].

Fewer changes may mean that no one is really interested in the requirements and
stakeholders are not sufficiently involved. Too many changes are also an alarm signal:
requirements are not yet stable, stakeholder groups may be too heterogeneous or in
conflict, and it is still too early to implement the requirements.

▪ Processing time of change requests from order to implementation.

With the help of benchmarking it is possible to find out which figures make sense and are
achievable as target values.

Improvement actions can either refer to the process parameters described in Section 9.2, or
to how the individual activities are performed in detail, for example, the methods used.

Another possibility for process improvement is to analyze the errors made in requirements
engineering—for example, errors found during the specification inspection, or errors
delivered with the software that can be traced back to requirements engineering. You then
ask about their causes and the causes of the causes. This gives ideas for improvement actions.

Maturity models such as the CMMI (capability maturity model integration), based on ISO
15504 [Kneu2007], [CKS2011], [CMMI], or ITIL for software maintenance [Beim2012],
[Ebel2014] offer more concrete help for process improvement in requirements engineering
(but not only there).

According to [Eber2012], a maturity model is a "model that reflects the process capability in
defined categories, thus allowing a reliable and repeatable process evaluation. A maturity
model makes demands of processes and does not prescribe any processes itself. It is therefore
not a process model. Used to evaluate process maturity and process improvement, for both a
company's own process and those used by the supplier."

Maturity models describe activities or practices that must be performed to reach a certain
level of maturity. All other methods of process improvement can also be used to improve the
requirements engineering process, such as TQM (Total Quality Management) [HuMa2011]
and Six Sigma [Tava2012], [BWJ2013].

178 Management of Requirements Engineering Processes

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 178/ 239

In particular, TQM consists of principles for achieving quality and economic action. Important
factors here are, for example, customer orientation, process orientation, quality orientation,
joint responsibility of all employees, continuous improvement, and rational decisions. In
contrast, Six Sigma is a framework for improvement, whereby measurements and statistical
analyses are performed to create products that are free of errors in a process that is free of
errors.

In particular, improving requirements engineering is supported by the collection of best
practices from Sommerville and Sawyer [SoSa1997], who differentiate between three
categories of best practices: basic, intermediate, and advanced. The first step when improving
the requirements engineering process is to implement all basic practices, then the
intermediate practices, and finally, those practices classified as advanced.

The basic techniques include, for example, the definition of a standard template for the
requirements specification or a checklist for inspecting this specification.

The template for an action plan from Karl Wiegers [Wieg2005] supports the concrete planning
of process improvement. The template comprises the following content:

▪ Name of the improvement project

▪ Date

▪ Goals (of the improvement, expressed as business goals)

▪ Indicators of success (i.e., achievement of goals)

▪ Organizational influence of the change

▪ Participants (employees, their roles and time budgets)

▪ Measurement and reporting process (when will the progress of actions within this plan
be monitored, by whom, and how)

▪ Dependencies, risks, and constraints

▪ Estimated completion date of all actions within this plan

▪ Actions (3-10 per plan) with identifier, person responsible, target date, purpose,
description, deliverables, and resource requirements

When improving the requirements engineering process, note that it cannot be optimized on
its own, but only in cooperation with other project activities such as project management,
development, and testing. Changes in the requirements engineering process will also affect
those people's work.

Practical tip: Every process should be as simple as possible and only as complex as necessary. The

larger the number of binding guidelines you make, the more you restrict creativity and flexibility.

The constraints change, and therefore processes must also be constantly adjusted. If a process

does not change, it becomes obsolete.

Management of Requirements Engineering Processes 179

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 179/ 239

Improving the requirements engineering process

The requirements engineering process in our case study has been newly set
up and encompasses a number of stakeholders who have not worked
together before. These are risk factors that make observation of the
requirements engineering process particularly important.

In Section 8.2.2.1, we discussed which key figures the status report should
contain and why these key figures are so important. This data can be used to
submit an updated forecast for the delivery deadline on a weekly basis.

If delays or other difficulties occur over the course of the requirements
engineering process, the causes are investigated and actions taken.

However, a proactive approach is also to be taken, and risks associated with
delivery reliability identified. Delivery reliability is very important for the
project as a whole, and therefore this also applies for the requirements
engineering process. Furthermore, various activities build on one another
and are therefore dependent on one another. Together with the project
manager, Peter Reber therefore performs a critical path analysis in the
network diagram of the requirements engineering process to find out which
activities are particularly critical for meeting the final deadline. These
activities are then to be monitored particularly closely. (We do not describe
the network diagram technique in more detail here because it is a project
management method. However, you can find more information about it in
DIN 69900 [DIN69900] and in any project management book.) The risk
analyses that are to be performed after every change to the requirements and
for every requirement change are seen as particularly critical. To ensure that
these are not delayed unnecessarily, the availability of multiple IT security
experts is ensured. These experts plan a workshop for every Monday
afternoon. If the workshop is not necessary, it can be canceled. This ensures
that resources are regularly available for the risk analyses.

The persons involved in the requirements engineering process are also asked
to give their opinion. The usability expert sees a risk for the quality of the
results if the interface design is created without participation by the users.
The expert would like the opportunity to get feedback from the users, who
are represented here by the Customer Advisory Board. Therefore, an
additional activity "User tests of the interfaces" is scheduled. This activity is
performed by the usability expert and the moderator together and they
consult the Customer Advisory Board. Table 10 shows the extended RACI
matrix.

180 Management of Requirements Engineering Processes

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 180/ 239

Activity Requirements
Manager

Business
Analyst

IT
Security
Expert

Usability
Expert

Moderator Customer
Advisory
Board

Analysis
of
business
processes

A, I R I C, I I

Risk
analysis

A, I C, I R C, I

Interface
design

A C C R

User tests
of the
interfaces

A C R C

Ideas
workshop

A, I I I I R C

…

Table 10: Example of a RACI matrix for requirements engineering

9.6 Content for the Requirements Management Plan

The requirements management plan documents the requirements engineering process in one
of the notations described above. It also specifies whether the requirements are elicited upfront
or iteratively, how changes to requirements are to be incorporated, and the responsibilities for
the requirements engineering activities. The level of detail is defined by the requirements
information model.

It should also be clear how the requirements engineering process is monitored (e.g., the report
used). Actions for evaluating and improving processes should also be planned, for example
Lessons Learned analyses after the end of the project.

9.7 Literature for Further Reading

[BWJ2013] Franz J. Brunner, Johann Wappis, Berndt Jung: Null-Fehler-Management:
Umsetzung von Six Sigma, Carl Hanser Verlag GmbH & Co. KG; edition: 4, revised and extended
edition, 2013 (available in German only).

[DIN69900] DIN 69900 Project management – Project network techniques; Descriptions and
Concepts, 2009.

[HuMa2011] Thomas Hummel, Christian Malorny: Total Quality Management: Tipps für die
Einführung, Carl Hanser Verlag GmbH & Co. KG; edition: 4, completely revised edition, 2011
(available in German only).

[Tava2012] Serkan Tavasli: Six Sigma Performance Measurement System: Prozesscontrolling
als Instrumentarium der modernen Unternehmensführung, Deutscher Universitätsverlag,
2012 (available in German only).

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 181/ 239

10 Requirements Management in Agile
Projects

10.1 Background

10.1.1 Basic Principles of Agile Development

In its pure form, a classic, phased, plan-driven process would run as follows: first, the overall
project is planned, then the requirements are specified and accepted completely upfront, and
then the requirements are implemented and tested.

However, this process does not work in all projects and requirements domains. In particular,
it does not work if the requirements are not well-known enough due to a lack of knowledge
or experience (e.g., for very innovative projects) or the requirements are constantly changing
in a volatile project environment. Therefore, good requirements engineering usually takes
place iteratively, using prototypes, for example, and not according to a pure waterfall model.

The agile development methods also recommend an iterative process, although a lightweight
process with very short cycles, whereby within an iteration, only those documents that are
absolutely necessary are created. Furthermore, agile processes welcome new requirements
and changes to requirements at any time, as these can be considered in a subsequent iteration
("embrace change").

Of course, there are more than just these two extreme processes; there are all possible levels
between upfront and iterative requirements engineering, between heavyweight and
lightweight requirements engineering.

The Agile Manifesto is the common foundation of all agile approaches. From the software
developers' point of view, the Agile Manifesto states [AgileManifesto]:

We are uncovering better ways of developing software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

In the agile approach therefore, collaboration, productivity, and the individual strengths of the
team are more important than contracts and documentation (including requirements
specifications).

This distinguishes agile methods from plan-driven approaches that require clear contractual
elements (e.g., project scope, requirements specifications, release plans, or a defined change
process).

182 Requirements Management in Agile Projects

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 182/ 239

The Agile Manifesto also defines thirteen principles [AgileManifesto]:
1. "Our highest priority is to satisfy the customer through early and continuous delivery of

valuable software.

2. Welcome changing requirements, even late in development. Agile processes harness

change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months, with a

preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals.

6. Give them the environment and support they need, and trust them to get the job done.

7. The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

8. Working software is the primary measure of progress.

9. Agile processes promote sustainable development. The sponsors, developers, and users

should be able to maintain a constant pace indefinitely.

10. Continuous attention to technical excellence and good design enhances agility.

11. Simplicity—the art of maximizing the amount of work not done—is essential.

12. The best architectures, requirements, and designs emerge from self-organizing teams.

13. At regular intervals, the team reflects on how to become more effective, then tunes and

adjusts its behavior accordingly."

The most important agile methods are:

▪ Scrum [ScBe2001], [SuSc2013], [ScSu2013]

▪ Extreme Programming XP [Beck2000]

▪ Kanban [Ande2010]

▪ Lean software development [PoPo2003]

▪ Crystal [Cock1997], [Cock2004], [Cock2006]

▪ Feature-driven development (FDD) [PaFe2002], [Nebu2014]

Requirements Management in Agile Projects 183

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 183/ 239

Practical tip: In actual fact, the alternatives for selecting a process model are not just "agile or
waterfall". Not only are there numerous agile and numerous plan-driven process models, there
are also various variants of every process model, such as hybrid processes with elements from
both worlds. You can also tailor a process model from an existing model [Herr2014]. In light of
these extensive selection options, it is worth analyzing the constraints and needs of your project
precisely and selecting the process model carefully. We cannot look here in detail at how you do
this. However, we will discuss the selection of the appropriate requirements management
practices from the repertoire of agile methods. Requirements management practices from agile
methods can also be applied in non-agile projects.

10.1.2 Scrum as the Representative of the Agile Methods

Scrum is currently the most widespread agile approach. For a complete description, see the
Scrum Guide 2013 [ScSu2013]. Scrum is described by its process (driven by its events), its
artifacts, and its roles. These are very typical for agile frameworks and can therefore be found
in similar form in other agile methods.

10.1.2.1 Scrum Process

Scrum defines the work process as follows: a sprint (iteration) lasts up to four weeks. At the
end of every sprint, a finished, usable, and potentially deliverable product (component,
increment, etc.) must be completed.

The sprint contains the following events or meetings:

▪ Sprint planning: here, the entries in the product backlog (the list of all requirements
currently elicited) that are to be processed in the next sprint are identified. A sprint
backlog is created by filing the backlog items to be processed. In this backlog, tasks are
often presented through user stories (see below), meaning that work is planned based
on requirements.

▪ Sprint: defined period in which the team processes the items in the sprint backlog.

▪ Daily scrum: there is a daily scrum (also referred to as a stand-up meeting) every
workday. This is a team meeting to exchange information about current work and
difficulties and to plan the workday in detail.

▪ Sprint review: here, at the end of a sprint, the work results of the sprint that has just
finished are discussed. The product owner accepts the sprint result.

▪ Sprint retrospective: after a sprint has finished, the scrum team (i.e., product owner,
scrum master, and development team) discusses the collaboration. The aim is to find out
how the work process in the team can be improved.

184 Requirements Management in Agile Projects

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 184/ 239

10.1.2.2 Scrum Artifacts

The product backlog…

▪ Contains the backlog items, such as the user stories for the product to be developed, as
well as technical and administrative tasks in the order of processing. The product owner
should sort the backlog items in the product backlog such that the goals and missions
can be achieved optimally.

▪ Does not have to be complete; it is maintained continuously.

▪ Describes high-priority user stories in more detail than the low-priority ones.

The sprint backlog…

▪ Contains all backlog items to be realized in this sprint, along with the plan for the delivery
of the product increment and for fulfilling the sprint goal.

▪ Makes all the work that the development team deems necessary to achieve the sprint
goal visible.

▪ Is supplemented with additional work by the development team if this work is necessary
to achieve the sprint goal.

▪ As good practice, the backlog items are broken down into tasks lasting typically one
workday.

One tool that is widely used in practice is the task board. This is a pinboard for visualizing the
sprint backlog and the degree of completion of the backlog items. The tasks of the current sprint
move from left to right according to the processing status. Each column represents a status:
To Do, In Process, To Verify, and Done. Each line groups the tasks that belong to one backlog
item (e.g., user story). The task board thus presents a view of the requirements (user stories)
and their status.

Another tool often used in practice to present project progress is the burndown chart. This is
a graphical presentation, to be recorded every day, of the remaining effort to be performed
for each sprint. In an ideal situation, the curve falls continuously (hence burndown) and at the
end of the sprint, the remaining effort is zero. Here, the status and degree of completion of the
current sprint presented on the task board are visualized quantitatively and graphically.

The increment is the completed, executable, and potentially deliverable product at the end of
the sprint. According to the Agile Manifesto, this is the most important artifact.

The impediment backlog is a list of all impediments to the project. The scrum master, together
with the team, is responsible for eliminating these impediments.

From the point of view of requirements management, the user story is the central artifact. A
user story describes a requirement on an index card with a defined sentence construction. A
user story usually takes the following form:

 As <ROLE>

 I want <FUNCTIONALITY>,

 so that <BENEFIT>.

For example:

 As a customer,

Requirements Management in Agile Projects 185

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 185/ 239

 I want to transfer money from my account to another account

 to pay my bills as soon as possible.

The specification of the benefit is optional and can be omitted. Specifying the benefit can make
the added value of the functionality for the role explicit, which in turn improves the
understanding of the user story.

The user story can also contain (e.g., at the corners) information such as the cost estimate (e.g.,
in story points), the benefit for the user (on a points scale), and the technical risk. This
information is used to prioritize the user stories.

Acceptance criteria and test cases are also specified more precisely for every user story. These
can be documented briefly on the rear of the index card in the following form:

 On condition that <PRECONDITION>,

 if <TRIGGER>,

 then <RESULT>.

For example:

On condition that there is more than €100 in my account,

if I activate a transfer of €100,

then there will be €100 less displayed in my account, and €100 more than before in the
target account.

Noting requirements (user story) and test cases on the same card provides the traceability
between both with little effort.

10.1.2.3 Scrum Roles

Scrum differentiates between only three roles in the scrum team: product owner, scrum master,
and development team. The development team organizes itself—not only the programming,
but also requirements engineering, requirements management, and project management.
With regard to requirements management, the tasks are divided up as follows:

▪ The product owner makes all content-based decisions: which backlog items (e.g., user
stories) there are, what they cover, how they are formulated, how they are to be tested,
and in particular, what priorities they have.

▪ The scrum master is responsible for the understanding and the execution of scrum. The
scrum master does this by ensuring that the scrum team complies with the theory,
practices, and rules of scrum; that is, the scrum master coaches the scrum team.

▪ The development team implements the requirements. The team members inform each
other about the processing status in the daily scrum.

186 Requirements Management in Agile Projects

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 186/ 239

10.2 Requirements Management as Part of Agile Product
Development

In agile development requirements are very important. Requirements in the form of user
stories are particularly popular: the user stories are the basis for planning the iterations and
work, and for monitoring the progress on the task board and in the burndown chart. However,
it is typical for requirements to be specified as lightweight as possible and "just good enough".
In agile methods, team members usually work closely together and communicate with each
other on a daily basis. The user story is therefore merely a note about what was discussed. It
therefore does not need to be complete or clear for third parties.

From the point of view of requirements management, the agile methods are presented as
follows:

▪ The agile requirements landscape is generally simple: user stories are used with
particular frequency, as well as additional acceptance tests for the specification of the
requirements. If necessary, user stories that belong together can be grouped in epics (see
below).

▪ Each requirement or user story has just a few attributes—for example, a cost and
benefits evaluation or the risk—which are included on the user story card. The product
owner evaluates the benefits, and the development team evaluates the technical risks and
costs.

▪ There are just a few views of the requirements: the product backlog, the sprint backlog,
and the task board.

▪ The effort for the backlog items is often estimated using planning poker, which we
described in Section 4.5.5. The criteria used to prioritize the backlog items are the few
available attributes, in particular the costs and benefits. The cost/benefit ratio thus
determines the priority. Or conversely, only those attributes that are useful for the
prioritization are managed.

▪ The order of implementation for the user stories is determined as follows: according to
the value for the product owner, according to technical dependencies (functions that are
the basis for others must be implemented first), according to the technical risk (user
stories that have technical risks with regard to implementation are implemented as early
as possible to allow the risks to be evaluated better at an early stage), and according to
sprint topic.

▪ There is no version management in this sense. Completed or obsolete user stories usually
end up in the wastepaper bin.

▪ The change process is simple: new requirements or changes to requirements are written
to the product backlog and considered in the next sprint planning. If a user story that has
not yet been realized is replaced, it ends up in the wastepaper bin. No approval process
and no committee are necessary.

The product owner bears the full responsibility for this. The decision about the actual
implementation of new ideas is taken during the sprint planning.

Requirements Management in Agile Projects 187

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 187/ 239

▪ Variant management is not planned in agile development. Furthermore, traceability is
at best implicit, for example, through the assignment of user stories to iterations or user
stories to epics. The traceability between the user story and the code takes the form of
check-in comments in the version management system. User stories and test cases must
also be linked traceably with one another—for example, by being physically on the same
story card.

▪ Reporting is easy and is based on requirements: the task board shows the processing
status of every task and every user story for the current day. The burndown chart shows,
quantitatively, the amount of work still to be done and whether it is likely that all
planned user stories will have been realized by the end of the sprint. Furthermore, no
reports are necessary if the team coordinates with one another daily and communicates
constantly with one another.

▪ In the agile methods, there is no explicitly defined requirements engineering process.
The product owner can either represent all stakeholders of the system and formulate
their requirements, or is responsible for eliciting these requirements. This requirements
elicitation process is not part of scrum and is therefore not defined here.

▪ The impediment backlog and the sprint retrospective are used to improve the work
process and thereby also requirements engineering and requirements management.

▪ The tools to be used are simple. Originally, only index cards and a pinboard were used.
However, the more that agile teams do not work in the same location, the more that
simple software tools are being used. These tools implement the backlogs, task board,
and burndown chart electronically. This allows employees distributed globally to access
these artifacts at any time.

In agile development, therefore, some of the requirements management elements that we
recommend are missing. Naturally, these cannot simply be omitted without any risk! From
the perspective of requirements management, this lightweight, iterative agility requires the
following:

▪ The product owner knows the requirements or can elicit them. If applicable, the product
owner can consult multiple additional people. However, these persons must be
constantly available and must work actively in the project.

▪ The development team has enough domain knowledge to be able to understand the
requirements correctly despite their lightweight description as a user story. If applicable,
the lightweight user stories can also be supplemented and made more specific with more
heavyweight forms of presentation.

▪ The team organizes itself and takes responsibility for its own work.

In practice, it is actually the case that sometimes, the lightweight requirements specification
in the form of user stories and acceptance tests (see Section 10.1.2.2) is not enough. However,
the agile principles also do not prohibit individual or all requirements being specified in more
detail, in a more heavyweight form, or in a form other than user stories.

Methods from classic requirements engineering and classic requirements management can be
used additionally in agile projects if the team feels this makes sense or company guidelines
prescribe this. The use case, which is also established as a tool in classic requirements
specification, can be used as an artifact in an agile environment as well (e.g., [Cock2001] or
[JSB2011]).

188 Requirements Management in Agile Projects

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 188/ 239

A mixture between a classic and an agile project is also feasible, for example, the creation of
a requirements specification upfront and then iterative agile development and testing.

The agile methods have already expanded with additional forms of the requirements
specification that originate from classic requirements engineering or have been adapted from
there in a lightweight form. In the following, we briefly describe the vision board, minimal
viable product (MVP) and minimal marketable product (MMP), epics, and story maps.

The vision board (also referred to as the product canvas) [Pich2014] describes the vision and
a very brief, lightweight form of a business case for a product or project. It has only five fields,
as shown in Figure 46.

Figure 46: Vision board according to Roman Pichler [Pich2014] (own presentation)

Minimal viable product (MVP): This is the smallest product that can already be used to get
feedback from stakeholders. It contains just enough features for users to be able to evaluate
its usefulness [Ries2011].

Minimal marketable product (MMP): This is the smallest product that can be sold on the
market. It contains just enough features to allow a user to use it usefully. It is therefore the
smallest product that can be sold.

Epics are descriptions of requirements at a higher level of detail than user stories. They
therefore usually group multiple user stories.

Requirements Management in Agile Projects 189

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 189/ 239

An epic could bear the name "Account management", for example, and comprise multiple user
stories such as "View account balance", "Open account", and "Close account". Epics can be
discussed and presented as an epic value statement (see Figure 47) to show who they are useful
for and to what extent. This discussion of the benefits is then used to prioritize the epics and
the associated user stories and therefore the iteration planning.

Figure 47: Epic value statement template [Leff2011]

Story maps [Patt2008] are a presentation of the overview of the connection between
requirements and business processes. Story maps are used to determine the "walking
skeleton", that is, the minimum implementation of a functioning business process. One
possible presentation is to present the activities of the business process horizontally and to
assign the associated requirements (e.g., user stories) to the respective activities.

The scaling of agile approaches to large and distributed teams is in its infancy, some
frameworks are currently being developed. Some approaches can be found in [Ecks2004],
[Ecks2010], [Leff2011], and [KoBe2013].

10.3 Mapping Requirements Management Activities to
Scrum Activities

Scrum sees itself as a "framework within which people can address complex adaptive
problems, allowing them to productively and creatively deliver products of the highest
possible value" [SuSc2013]. However, scrum specifies only general work processes. In the
following table, the requirements management activities are assigned to the scrum activities
or artifacts. Furthermore, the executing role is specified in scrum. Not all requirements
management activities are covered by scrum. (That is, some of the activities are not covered
by the scrum guide. Beside the scrum guide there is a not insignificant amount of literature
describing more or less successful additions to scrum. Here we refer exclusively to the scrum
guide.) Whether and how the corresponding requirements management activity is then
executed in a scrum project is up to the scrum team.

190 Requirements Management in Agile Projects

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 190/ 239

RM Activity Scrum Activity or Artifact Scrum Role

Assignment of
attributes

User stories in the backlog: description, order, estimate,
status, and value. Optional: grouping

PO, DT

Evaluation and
prioritization

Estimation of the benefits and costs through planning
poker

Arrangement of the user stories in the product backlog

Selection of user stories for a sprint

Prioritization within a sprint

DT

PO

PO and DT

DT

Traceability There is an implicit traceability of user stories to the
corresponding acceptance test cases and, with suitable
attribute assignment, back to the sources of the user
stories.

In addition, traceability is possible within the product
backlog (dependencies) and from user stories to the
source code.

Scrum says nothing about connecting user stories within
the product backlog. Traceability via epics (grouped user
stories) would be conceivable.

Traceability is documented only if necessary.

None

Versioning Versioning of user stories is unnecessary. The current
version of a user story is always relevant.

None or PO

Changes Changes can be proposed at any time. New
requirements lead to new user stories, changes to
requirements lead to a user story being changed or
replaced by a new one.

PO

Variant
management

Agile methods do not explicitly support variant
management. However, it is possible to use standard
methods of variant management.

PO

Reporting Reports are mainly verbal. The artifacts used to track the
completion status can also serve as reports:

Daily standup

Sprint review

Sprint retrospective

Product backlog

Sprint backlog

Burndown chart

DT

Process
management

Sprint retrospective and impediment backlog SM, DT

Table 11: Mapping of requirements management activities to scrum

Requirements Management in Agile Projects 191

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 191/ 239

10.4 Literature for Further Reading

[AgileManifesto] Manifesto for Agile Software Development. Available at
http://agilemanifesto.org/ (status: November 11, 2014).

[Beck2000] Kent Beck: Extreme programming explained. Addison-Wesley, Upper Saddle
River, 2000.

[JSB2011] I. Jacobson, I. Spence, K. Bittner: Use Cases 2.0. Ivar Jacobson International, 2011.

[KoBe2013] H.-P. Korn and J.P. Berchez (eds.): Agiles IT-Management in großen
Unternehmen. Symposion, 2013 (available in German only).

[Leff2011] D. Leffingwell: Agile Software Requirements, Lean Requirements Practices for
Teams, Programs, and the Enterprise. Addison-Wesley Professional, 2011.

[PoPo2003] Mary Poppendieck, Tom Poppendieck: Lean Software Development. Addison
Wesley, 2003.

[Ries2011] Eric Ries: The Lean Startup: How Constant Innovation Creates Radically Successful
Businesses. Penguin, 2011.

[ScBe2001] Ken Schwaber, Mike Beedle: Agile Software Development with SCRUM. Prentice
Hall, 2001.

[ScSu2013] Ken Schwaber, Jeff Sutherland: The Scrum Guide — The Definitive Guide to
Scrum: The Rules of the Game, July 2013,
http://www.scrumguides.org/docs/scrumguide/v1/Scrum-Guide-US.pdf (status:
09/29/2014).

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 192/ 239

11 Tool-Based Requirements
Management

The market for requirements engineering and requirements management tools currently
includes a number of different tool providers with different license models. Everything from
freeware to company licenses is represented. These tools differ above all in their core focus
(documentation, collaboration, traceability, agility).

Not all of the tools available on the market can be seen as true requirements management
tools, even though they can certainly be helpful for requirements management (e.g., modeling
tools or version control systems (VCS)).

Via the following link, you can access an extensive list of more than 100 requirements
management tools, including a classification of their core focus:
http://makingofsoftware.com/resources/list-of-rm-tools. [HJD2011], describes how the
requirements management tool DOORS® can be used to manage requirements.

Practical tip: You will not always find special requirements management tools being used in a

company. Standard office applications and web-based platforms are often used for exchanging

documents and for collaboration. Even under these conditions, a good requirements management

can be implemented with some organizational rules and the required discipline. Always remember

that selecting just any requirements management tool is generally not a constructive solution if

you have not yet decided how you want to implement your requirements engineering process (see

the requirements management plan). A short aid to selecting tools based on the requirements

management aspects discussed in the handbook can be found in Annex B.

11.1 Role of Tools in Requirements Management

The use of tools is intended to make it easier for the requirements manager to document and
manage requirements. Due to their special functionalities, requirements management tools
enable a holistic view of requirements, in that, amongst other things, relationships between
different requirements (see Chapter 6, Traceability) as well as the lifecycle of individual
requirements (see Chapter 5, Version and Change Management) can be represented.

A requirements management tool is a software application whose main objective is to support
activities in requirements management.

Many different applications are traditionally used in software and system development.
However, many of them cover only some aspects of requirements engineering and/or
requirements management. The distinction between these tools and dedicated tools for
requirements management is therefore not always clear-cut.

http://makingofsoftware.com/resources/list-of-rm-tools

Tool-Based Requirements Management 193

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 193/ 239

Tools for requirements management are based on specific assumptions, which means that
these tools can concentrate, for example, on specific process models, work environments, or
application domains:

▪ Specific process models, such as agile or plan-driven development

▪ Specific work environments, such as local or distributed collaboration

▪ Specific application domains, such as the automotive industry or the armaments
industry

[SoSa1997] describes the following five features as core functions of a requirements
management tool:

▪ Editor for requirements, including their attributes, to enable the recording and
attribute assignment for uniquely identifiable requirements artifacts; the editor can be
a pure text-based editor or an editor that supports textual and model-based descriptions

▪ Import of requirements from existing documents into the tool (e.g., based on the ReqIF
format, see Section 11.3) and export of managed requirements to other formats (e.g.,
in document-based specifications)

▪ Tracing of requirements, beginning with support for maintenance of traceability
relationships up to the use of maintained traceability relationships—for example, as
part of an impact analysis

▪ Versioning of requirements and the creation of requirements configurations and
baselines

▪ The creation of user-defined views of requirements, including their attributes

If we compare these features with those from [PoRu2011] (Section 9.3), we find the following
additional features which are important when selecting a requirements management tool:

▪ Distributed processing of requirements artifacts, including access control

▪ Creation of role-specific views for different user groups

▪ Creation of reports or evaluations of the managed artifacts

Regardless of the features that a tool offers, when selecting and introducing a tool, note that
any requirements management tool selected must fit with the procedures and processes
established in the company.

11.2 Basic Procedure for Tool Selection

Selecting the right tool is not easy. There are a lot of tools, and the tool that best meets your
situation depends on your own requirements engineering process. It is the process that
determines the requirements for the tool.

Requirements management tools are usually selected for more than just one single project. It
is often the case that tools are selected for multiple projects—for example, for all projects in
a department or a company. This generally makes the tool selection complex, which means
that the introduction of a requirements management tool is often driven by a separate project,
see also [RuSo2009].

194 Tool-Based Requirements Management

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 194/ 239

The recommendation is to implement the tool evaluation and selection through a separate
project. [RuSo2009] uses a two-phased selection procedure in which there is an initial, rough
selection for a first potential tool list (long list), and in a second step, an advanced selection to
reduce the tool list to the favorites (short list). Based on the short list, a selection decision is
taken and the tool is then introduced into the company through a project, and potentially
tailored to the company-specific requirements (customizing). Furthermore, to increase
acceptance, initial use in a pilot project is recommended. If the pilot project reveals that the
selected tool does not provide the desired support, the tool selection must be repeated. If no
tool meets the requirements exactly, the process can be adjusted instead of a tool.

Tool selection according to [RuSo2009]:

• Launch a tool selection project.

• Define rough selection criteria by formulating basic requirements.

• Perform the rough selection (long list) to identify the first potential systems.

• Refine the catalog of criteria on the basis of new and refined requirements for the tool.

• Conduct a fine selection (short list), up to a favored software candidate.

• Optional: If no tool meets requirements precisely, the software application must be adapted

(customized).

• In order to strengthen the acceptance in the company and to eliminate possible last concerns,

a pilot project is then launched.

Tip: Annex B contains some useful criteria for tool selection based on the requirements

management plan.

11.3 Data Exchange between Requirements Management
Tools

The import and export of requirements, attributes, meta-information, links, and associated
views is necessary, for example, to support collaboration with other departments, partners,
and suppliers who use tools from other providers. Such functions are also required if
migrations from one tool to another are planned.

In most requirements management tools, requirements and their relationships to one another
are placed in manufacturer-specific (proprietary) structures. This means that a simple
exchange between two requirements management tools from different manufacturers is
generally not possible without a lot of effort (even if the requirements information model is
identical).

The Object Management Group (see [OMG2013]) has defined the industry standard
Requirements Interchange Format (ReqIF). This allows requirements artifacts and meta-
information to be exchanged between tools from different manufacturers. It is used primarily
at the interface between the customer and the supplier. In addition to the exchange format, a
procedure is also defined.

Tool-Based Requirements Management 195

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 195/ 239

The initiative comes from the automotive industry, which features close collaboration
between suppliers and the automotive manufacturers, whereby precisely defined versions of
requirements artifacts have to be exchanged.

Figure 48: Example of an exchange of requirements artifacts between two organizations (simplified

according to [OMG2013])

ReqIF is an open, non-proprietary format. It is stored in XML documents. ReqIF thus enables
the exchange of requirements between different tools and partners. However, the
prerequisite for this is a standardized, aligned data model for the exchange (e.g., a
requirements information model).

ReqIF therefore offers the following advantages for data exchange here:

▪ The partners do not have to work with the same tool, which means that the suppliers do
not need to have a separate requirements engineering tool for each customer.

▪ With ReqIF, collaboration between companies can be improved by applying
requirements management methods across companies.

▪ Requirements can be transferred within an organization, even across tool boundaries.

▪ With ReqIF, requirements, with all attributes and meta-information, can be exchanged
without loss, unlike document exports in Word, PDF, etc.

Figure 48 shows the process of an exchange of requirements artifacts between organizations.
The specification of the requirements ("Customer requirements specification" in organization
A, and "System requirements specification" in organization B) is versioned using a repository.

The tools have interfaces for exporting and importing the requirements. Using snapshots from
the specification, content is transferred between the tools. The specification of how the exact
data exchange is to take place within the scope of the project is documented in the
requirements management plan.

196 Tool-Based Requirements Management

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 196/ 239

11.4 Content for the Requirements Management Plan

From a tool perspective, in the requirements management plan (see also Annex A), you define
how you want to use requirements management tools in your specific context. You can base
the description on the previously described chapters. Document what you want to support or
map, in which form, and using which tool, for example:

• Chapter 2 (Requirements Information Model): DOORS® is to be used to describe all of
the textual requirements in the requirements information model and the levels of
detail defined there. The model-based requirements (class diagrams, BPMN diagrams)
are to be described in Visual Paradigm.

• Chapter 3: DOORS® is to be used to create and maintain the attributes defined for the
textual requirements defined in Chapter 2. All user-defined views are to be defined in
DOORS® and assigned using role-based access rights.

In addition to the requirements information model, the techniques to be used for
prioritization, the version and change management, the implementation of traceability, the
selected procedure for variant management, the actual requirements engineering process,
and the reporting, the requirements management plan also describes which of these
techniques or activities are to be supported by a tool and by which tool.

Furthermore, the requirements management plan should also describe the parties between
which requirements have to be exchanged, and how this exchange is to take place using
defined imports and exports (see Section 11.3).

11.5 Literature for Further Reading

[OMG2013] OMG: Requirements Interchange Format (ReqIF). Object Management Group,
Version 1.1., 2013, http://www.omg.org/spec/ReqIF/1.1/PDF/ (status: November 11, 2014).

[Pohl2010] K. Pohl: Requirements Engineering – Foundations, Principles, and Techniques.
Springer, 2010.

[RuSo2009] C. Rupp & die SOPHISTen: Requirements-Engineering und –Management. Hanser,
5th edition, updated and extended, 2009 (available in German only).

http://www.omg.org/spec/ReqIF/1.1/PDF/

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 197/ 239

List of Abbreviations

AC actual cost

AHP analytical hierarchy process

BAC budget at completion

CAB Change Advisory Board

CCB Change Control Board

CMMI capability maturity model integration

CPRE Certified Professional for Requirements Engineering

CR change request

DIN Deutsches Institut für Normung (German Institute for Standardization)

EV earned value

FDD feature-driven development

GQM goal, question, metric

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IREB International Requirements Engineering Board

ISO International Organization for Standardization

IT information technology

ITIL IT Infrastructure Library

CPI continuous process improvement

MMP minimal marketable product

MVP minimal viable product

PDCA plan, do, check, act

PV planned value

RE requirements engineering

RACI responsible, accountable, consulted, informed

RIM requirements information model

RM requirements management

RMP requirements management plan

TBD to be determined

TBR to be resolved

UML Unified Modeling Language

XP Extreme Programming

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 198/ 239

Bibliography

[AgileManifesto] Manifesto for Agile Software Development. Available at
http://agilemanifesto.org/ (status: November 11, 2014).

[Ande2010] David J. Anderson: Kanban. Successful Evolutionary Change for Your Technology
Business. Blue Hole Press, Sequim, Washington 2010.

[BaWe1984] Victor R. Basili, David M. Weiss: A methodology for collecting valid software
engineering data. Software Engineering, IEEE Transactions on Software Engineering (1984):
728–738.

[Basi1992] V.R. Basili: Software Modeling and Measurement: The Goal Question Metric
Paradigm. Computer Science Technical Report Series, CS-TR-2956 (UMIACS-TR-92-96),
University of Maryland, College Park, MD, September 1992.

[BBHK2014] Braun, P.; Broy, M.; Houdek, F.; Kirchmayr, M.; Müller, M.; Penzenstadler, B.; Pohl,
K.; Weyer, T.: Guiding requirements engineering for software-intensive embedded systems in
the automotive industry. Computer Science - R&D 29(1): (2014).

[BCR] Victor R. Basili, Gianluigi Caldiera, H. Dieter Rombach: The Goal Question Metric
Approach. Tutorial, University of Maryland,
http://www.cs.umd.edu/~mvz/handouts/gqm.pdf (status: November 11, 2014).

[Beck2000] Kent Beck: Extreme programming explained. Addison-Wesley, Upper Saddle
River, 2000.

[Beim2012] Martin Beims: IT-Service Management mit ITIL®: ITIL® Edition 2011, ISO
20000:2011 und PRINCE2® in der Praxis, Carl Hanser Verlag GmbH & Co. KG, 3rd updated
edition, 2012 (available in German only).

[BSB2008] Christoph Bommer, Markus Spindler, Volkert Barr: Softwarewartung –
Grundlagen, Management und Wartungstechniken. Dpunkt.verlag, 2008 (available in German
only).

[Bout2011] E. Boutkova: Experience with Variability Management in Requirement
Specifications. In: D.E. Almeida, T. Kishi, C. Schwanninger, I. John, and K. Schmid (eds):
Software Product Lines – 15th International Conference (SPLC), Munich, 2013.

[BoHo2011] E. Boutkova, F. Houdek: Semi-automatic identification of features in requirement
specifications. In: Proceedings of the 19th International Requirements Engineering
Conference, Trento, Italy, September 2011.

[BWJ2013] Franz J. Brunner, Johann Wappis, Berndt Jung: Null-Fehler-Management:
Umsetzung von Six Sigma, Carl Hanser Verlag GmbH & Co. KG; edition: 4, revised and extended
edition, 2013 (available in German only).

[BLP2004] S. Bühne, K. Lauenroth, K. Pohl: Why is it not Sufficient to Model Requirements
Variability with Feature Models. In: Aoyama, M.; Houdek, F.; Shigematsu, T. (eds) Proceedings
of Workshop: Automotive Requirements Engineering (AURE04). IEEE Computer Society
Press, Los Alamitos 2004.

[CMMI] http://www.cmmi.de/ (status: November 11, 2014).

http://agilemanifesto.org/
http://www.cs.umd.edu/~mvz/handouts/gqm.pdf
http://www.cmmi.de/

References 199

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 199/ 239

[CNAT2011] J.M. Carillo de Gea, J. Nicolás, J.L.F. Alemán, A. Toval, C. Ebert, A. Vizcaíno:
Requirements Engineering Tools. In: IEEE Software, July/August 2011.

[CNAT2012] J.M. Carillo de Gea, J. Nicolás, J.L.F. Alemán, A. Toval, C. Ebert, A. Vizcaíno:
Requirements Engineering Tools: Capabilities, survey, and assessment. In: Information and
Software Technology, Volume 54, Issue 10, October 2012.

[CKS2011] Mary Beth Chrissis, Mike Konrad, Sandy Shrum: CMMI for Development:
Guidelines for Process Integration and Product Improvement, Addison Wesley, 2011.

[Cock1997] A. Cockburn: Surviving Object-Oriented Projects. Addison-Wesley, 1997.

[Cock2001] A. Cockburn: Writing Effective Use Cases. Addison-Wesley, 2001 (available in
German only).

[Cock2004] A. Cockburn: Crystal Clear, A Human-Powered Methodology for Small Teams.
Addison-Wesley, 2004.

[Cock2006] A. Cockburn: Agile Software Development. Addison-Wesley, 2006.

[ClNo2007] P. Clements, L. Northrop: Software Product Lines: Practices and Patterns. Addison
Wesley, Boston, 6th Edition, 2007.

[CHW1998] J. Coplien, D. Hoffmann, D. Weiss: Commonality and Variability in Software
Engineering. In: IEEE Software, Volume 15, Issue 6, 1998.

[CzEi2000] K. Czarnecki, U.W. Eisenecker: Generative Programming: Methods, Tools, and
Applications. Addison Wesley, 2000.

[CHQW2022] Thorsten Cziharz, Peter Hruschka, Stefan Queins, Thorsten Weyer: Handbook
Requirements Modeling, Education and Training for IREB Certified Professional for
Requirements Engineering, Advanced Level Requirements Modeling, IREB, Version 2.0.0, July
1, 2022.

[Davi2003] A. Davis: The Art of Requirements Triage. IEEE Computer, Volume 36, Issue 3,
2003.

[Davi2005] Alan M. Davis: Just Enough Requirements Management – Where Software
Development Meets Marketing. Dorset House Publishing, 2005.

[DeMa1982] Tom DeMarco: Controlling Software Projects: Management, Measurement, and
Estimation. Prentice Hall/Yourdon Press, 1982.

[DeMa2009] Tom DeMarco: Software Engineering: An Idea Whose Time Has Come and
Gone? IEEE Software, July/August 2009.

[Demi1982] W.E. Deming: Out of the Crisis. Massachusetts Institute of Technology,
Cambridge 1982.

[DIN 61508] IEC DIN EN 61508-2 Functional safety of electrical/electronic/programmable
electronic safety-related systems. VDE Verlag, 2002.

[DIN69900] DIN 69900 Project management – Project network techniques; Descriptions and
Concepts, 2009.

[Ebel2014] N. Ebel: ITIL®(R) 2011 Edition: Grundlagen und Know-how für das IT Service
Management und die ITIL®(R)-Foundation-Prüfung, dpunkt.verlag GmbH, 1st edition, 2014
(available in German only).

200 References

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 200/ 239

[Eber2012] C. Ebert: Systematisches Requirements Engineering. Dpunkt, 4th edition, 2012
(available in German only).

[Ecks2004] J. Eckstein: Agile Software Development in the Large. Dorset House Publishing,
2004.

[Ecks2010] J. Eckstein: Agile Software Development with Distributed Teams. Dorset House
Publishing, 2010.

[Gabl2014a] Springer Gabler Verlag (ed.), Gabler Wirtschaftslexikon, keyword:
"Produktfamilie", online:
http://wirtschaftslexikon.gabler.de/Archiv/135585/produktfamilie-v5.html (status:
November 11, 2014).

[Gabl2014b] Springer Gabler Verlag (ed.), Gabler Wirtschaftslexikon, keyword:
"Produktlinie", online: http://wirtschaftslexikon.gabler.de/Archiv/56903/produktlinie-
v6.html (Stand: November 11, 2014).

[GoFi1994] O.C.Z. Gotel, A.C.W Finkelstein: An Analysis of the Requirements Traceability
Problem. Proceedings of IEEE International Conference on Requirements Engineering, 1994.

[Glin2014] Martin Glinz: A Glossary of Requirements Engineering Terminology. Version 1.6
May 2014.

[Herr2014] A. Herrmann: Leichte Dellen - Wenn agil nicht geht: Feature Driven Development.
iX 9/2014, pp. 110–113 (available in German only).

[HJD2011] E. Hull, K. Jackson, J. Dick: Requirements Engineering. Springer, 3rd edition, 2011.

[HuMa2011] Thomas Hummel, Christian Malorny: Total Quality Management: Tipps für die
Einführung. Carl Hanser Verlag GmbH & Co. KG; edition: 4, completely revised edition, 2011
(available in German only).

[IEEE830] IEEE: IEEE 830-1998 Recommended Practice for Software Requirements
Specifications, 1998.

[IEEE1233] IEEE: IEEE Standard 1233 Guide for Developing of System Requirements
Specifications, 1998.

[IREB2015] IREB: Syllabus IREB Certified Professional for Requirements Engineering –
Foundation Level, Version 2.2, 2015.

[ISO9000] ISO: ISO 9000-1 Quality systems – Model for Quality Assurance in Design,
Development, Production, Installation and Servicing. International Organization for
Standardization (ISO), 1994.

[ISO9241] ISO: DIN EN ISO 9241 Ergonomics of human-system interaction.

[ISO12207] ISO: ISO/IEC 12207: 1995, Information Technology – Software life cycle
processes. International Organization for Standardization (ISO), 1995.

[ISO29148] ISO: ISO/IEC/IEEE 29148:2018: Systems and software engineering – Life cycle
processes – Requirements engineering, 2018.

[ISO14102] ISO/ IEC 14102:1995 Information Technology – Evaluation and Selection of CASE
Tools, 1995.

[ISO15288] ISO/IEC 15288:2008 Systems and software engineering — System life cycle
processes, 2008.

http://wirtschaftslexikon.gabler.de/Archiv/135585/produktfamilie-v5.html
http://wirtschaftslexikon.gabler.de/Archiv/56903/produktlinie-v6.html
http://wirtschaftslexikon.gabler.de/Archiv/56903/produktlinie-v6.html

References 201

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 201/ 239

[ISO24766] ISO: ISO/IEC TR 24766:2009: Information technology – Systems and software
engineering – Guide for requirements engineering tool capabilities. International
Organization for Standardization (ISO), 2009.

[ISO25010] ISO: ISO/IEC 25010:2011 Systems and software engineering — Systems and
software Quality Requirements and Evaluation (SQuaRE) — System and software quality
models, 2011.

[ISO29110] ISO: ISO 29110 Lifecycle process standard for Very Small and Medium Entities
(VSME), 2011.

[Oran2013] Foundations of IT Service Management with ITIL®2011. 2nd Edition ITILyaBrady,
2013 (Kindle Edition).

[JSB2011] I. Jacobson, I. Spence, K. Bittner: Use Cases 2.0. Ivar Jacobson International, 2011.

[KCHN1990] C. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson: Feature-Oriented Domain
Analysis (FODA) – Feasibility Study. Software Engineering Institute, 1990.

[KKLK1998] K. Kang, S. Kim, J. Lee, K. Kim, E. Shin, M. Huh: FORM: A Feature-Oriented Reuse
Method with Domain-Specific Reference Architectures. Annals of Software Engineering, No. 5,
1998.

[KLD2002] K. Kang, J. Lee, P. Donohoe: Feature-Oriented Product Line Engineering. IEEE
Software 19(4): 2002.

[Kano1984] N. Kano: Attractive Quality and Must-be Quality. Journal of the Japanese Society
for Quality Control, H. 4, 1984.

[KaRy1997] J. Karlsson, K. Ryan: A Cost-Value Approach for Prioritizing Requirements. IEEE
Software 14, No. 5, 1997.

[Kerz2003] H. Kerzner: Project Management. A Systems Approach to Planning, Scheduling,
and Controlling. John Wiley & Sons, 2017.

[Kneu2007] Ralf Kneuper: CMMI: Improving Software and System Development Processes
Using Capability Maturity Model Integration. Rocky Nook, 1st edition, 2009.

[KoBe2013] H.-P. Korn and J.P. Berchez (eds.): Agiles IT-Management in großen
Unternehmen. Symposion Publishing, 2013 (available in German only).

[Küpp2005] H.-U. Küpper: Controlling: Konzeption, Aufgaben, Instrumente. Schäffer-
Poeschel, 4th edition, 2005 (available in German only).

[KuSt2001] K. Kurbel, E. Stickel: Informationsmanagement. Oldenbourg Wissenschaftsverlag,
2001 (available in German only).

[Leff2011] D. Leffingwell: Agile Software Requirements, Lean Requirements Practices for
Teams, Programs, and the Enterprise. Addison-Wesley Professional, 2011.

[LeWi2000] D. Leffingwell, D. Widrig: Managing Software Requirements – A Unified Approach.
Reading, Addison-Wesley, 2000.

[LoKa1995] P. Loucopoulos, V. Karakostas: System Requirements Engineering. McGraw-Hill,
1995.

[MGP2009] P. Mäder, O. Gotel, I. Philippow: Getting Back to Basics: Promoting the Use of a
Traceability Information Model in Practice. Proceedings of 5th International Workshop on
Traceability in Emerging Forms of Software Engineering (TEFSE2009), Vancouver, Canada,
May 2009.

202 References

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 202/ 239

[MJZC2013] P. Mäder, P.L. Jones, Y. Zhang, J. Cleland-Huang: Strategic Traceability for Safety-
Critical Projects. IEEE Software, Volume 30, Issue 3, May/June 2013.

[Mois2002] F. Moisiadis: The fundamentals of prioritizing requirements. Systems
Engineering, Test & Evaluation Conference, Sydney, October 2002.

[Nebu2014] Nebulon Pty. Ltd: Feature Driven Development.
http://www.featuredrivendevelopment.com/ (status: 09/29/2014).

[Nuse2001] B. Nuseibeh: Weaving the Software Development Process between Requirements
and Architecture. Proceedings of ICSE2001 Workshop STRAW-01, Toronto, May 2001.

[OMG2013] OMG: Requirements Interchange Format (ReqIF). Object Management Group,
Version 1.1., 2013, http://www.omg.org/spec/ReqIF/1.1/PDF/ (status: November 11, 2014).

[PaFe2002] Stephen R. Palmer, John M. Felsing: A Practical Guide to the Feature-Driven
Development. Prentice Hall International, 2002.

[Patt2008] Jeff Patton: The new user story backlog is a map, 10/08/2008
https://www.jpattonassociates.com/the-new-backlog/ (status: September 29, 2014).

[PHAB2012] Pohl, K., Hönninger, H., Achatz, R., Broy, M. (Eds.): Model-Based Engineering of
Embedded Systems - The SPES 2020 Methodology, Springer 2012.

[Pich2014] Roman Pichler: The Product Vision Board,
http://www.romanpichler.com/tools/vision-board/ (status: 09/28/2014).

[PMI2013] PMI: Project Management Book of Knowledge (PMBOK). Project Management
Institute, 5th Ed., 2013.

[Pohl1996] K. Pohl: Process-Centered Requirements Engineering. John Wiley Research
Science Press, 1996.

[Pohl2010] K. Pohl: Requirements Engineering – Fundamentals, Principles, Techniques.
Springer, 2010.

[PBL2005] K. Pohl, G. Böckle, F. van der Linden: Software Product Line Engineering –
Foundations, Principles, and Techniques. Springer, 2005.

[PoRu2015] K. Pohl and Chris Rupp: Requirements Engineering Fundamentals - A Study Guide
for the Certified Professional for Requirements Engineering Exam - Foundation Level - IREB
compliant. Rocky Nook, 2015.

[PoPo2003] Mary Poppendieck, Tom Poppendieck: Lean Software Development. Addison
Wesley, 2003.

[PriEsT] PriEsT, http://sourceforge.net/projects/priority/ (status: September 25, 2014).

[RBSP2002] M. Riebisch, K. Böllert, D. Streitferdt, and I. Philippow: Extending Feature
Diagrams with UML Multiplicities. in Proc. World Conf. Integrated Design and Process
Technology (IDPT), 2002.

[Ries2011] Eric Ries: The Lean Startup: How Constant Innovation Creates Radically
Successful Businesses. Penguin, 2011.

[RoRo2014] S. Robertson, J. Robertson: Mastering the Requirements Process – Getting
Requirements Right. Addison-Wesley, 3rd Edition, 2014.

[RuSo2009] C. Rupp & die SOPHISTen: Requirements-Engineering und –Management. Hanser,
5th edition, updated and extended, 2009 (available in German only).

http://www.omg.org/spec/ReqIF/1.1/PDF/
https://www.jpattonassociates.com/the-new-backlog/
http://www.romanpichler.com/tools/vision-board/
http://sourceforge.net/projects/priority/

References 203

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 203/ 239

[Saat1990] Thomas L. Saaty: Multicriteria decision making – the analytic hierarchy process.
Planning, priority setting, resource allocation. 2nd edition, RWS Publishing, Pittsburgh 1990.

[Schi2001] B. Schienmann: Kontinuierliches Anforderungsmanagement. Prozesse –
Techniken – Werkzeuge. Addison-Wesley, 2001 (available in German only).

[SHT2006] P.-Y. Schobbens, P. Heymans, J.C. Trigaux: Feature Diagrams: A Survey and a
Formal Semantics. Proceedings of the 14th International Requirements Engineering
Conference (RE’06), September 2006.

[ScBe2001] Ken Schwaber, Mike Beedle: Agile Software Development with SCRUM. Prentice
Hall, 2001.

[ScSu2013] Ken Schwaber, Jeff Sutherland: The Scrum Guide, July 2013
http://www.scrumguides.org/docs/scrumguide/v1/Scrum-Guide-US.pdf (status:
09/29/2014).

[SEI1999] Carnegie Mellon SEI: The Capability Maturity Model, Guidelines for Improving the
Software Process. Addison Wesley, 1999.

[SEI2010] Carnegie Mellon SEI: CMMI for Services, Version 1.3, Improving processes for
providing better services. 2010.

[SEI2011] SEI: CMMI® for Development, Version 1.3 CMU/SEI-2010-TR-033. Available at
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2010_005_001_15287.pdf
(status: August 28, 2015).

[SMK2013] S. Siraj, L. Mikhailov, J.A. Keane: PriEsT: an interactive decision support tool to
estimate priorities from pairwise comparison judgments. International Transactions in
Operational Research, 2013.

[SoSa1997] I. Sommerville, P. Sawyer: Requirements Engineering: A Good Practice Guide. John
Wiley & Sons, 1997.

[SpLi2007] A. Spillner, T. Linz: Basiswissen Softwaretest – Aus- und Weiterbildung zum
Certified Tester. Dpunkt.verlag, 3rd edition, 2007 (available in German only).

[SuSc2013] J. Sutherland, K. Schwaber: Scrum Guide, July 2013, available at www.scrum.org.

[Syra2014] Ingo Geppert, Torsten Lodderstedt: Projektanforderungsmanagement - Eine
pragmatische Lösung für effiziente Toolunterstützung. Projektmanagement, edition 4, 2010
http://www.syracom.de/uploads/media/Projektanforderungsmanagement.pdf (status:
11/06/2014) (available in German only).

[Tava2012] Serkan Tavasli: Six Sigma Performance Measurement System: Prozesscontrolling
als Instrumentarium der modernen Unternehmensführung. Deutscher Universitätsverlag,
2012 (available in German only).

[USCo2002] US Congress: Sarbanes-Oxley Act. Washington, USA, 107th Congress of the United
States of America, 23.01.2002.

[VanL2009] A. van Lamsweerde: Requirements Engineering – from System Goals to UML
Models to Software Specifications. John Wiley and Sons, 2009.

[VDI2001] VDI: VDI guideline 2519 sheet 1 - The procedure for the creation of tender and
performance specifications, 2001.

http://www.scrumguides.org/docs/scrumguide/v1/Scrum-Guide-US.pdf
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2010_005_001_15287.pdf
http://www.scrum.org/
http://www.syracom.de/uploads/media/Projektanforderungsmanagement.pdf

204 References

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 204/ 239

[Wann2013a] Roland Wanner: Earned Value Management: The Most Important Methods
and Tools for an Effective Project Control. CreateSpace Independent Publishing Platform,
2013.

[Wann2013b] Roland Wanner: Earned Value Management: So machen Sie Ihr
Projektcontrolling noch effektiver Taschenbuch. CreateSpace Independent Publishing
Platform, 3rd edition, 2013 (available in German only).

[Wieg2005] Karl Wiegers: Software Requirements. Microsoft Press Deutschland, 1st edition,
2005.

[WiBe2013] K. Wiegers, J. Beatty: Software Requirements. 3rd Edition. Microsoft Press, 2013.

[Youn2014] R. Young: The Requirements Engineering Handbook, Artech House, Boston, 2004.

[Zieg1998] K. Ziegbein: Controlling. Kiehl Friedrich Verlag, 6th edition, 1998.

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 205/ 239

Index

1

100-dollar technique 65

A

Abstraction level .. 24
Ad-hoc prioritization technique 59
Agile development ... 182
Agile Manifesto .. 182
Analytical hierarchy process 70
Analytical prioritization technique 59
Attribute ... 32
Attribute schema ... 37

B

Baseline ... 81
Basic factor .. 66
Binding time of a variant 130
Branching ... 82

C

Change Advisory Board 90
Change committee .. 90
Change Control Board 90
Change management................................. 85, 90
Change request... 93, 170
Change requirement .. 93
CMMI ... 176
Condensed view ... 49
Configuration management 80
Constraint ... 21
Continuous process improvement 176
Coverage analysis .. 97

D

Degree of completion 236
Deming cycle .. 176

E

Earned value analysis 236

Excitement factor .. 66
Explicit documentation of traceability ... 104

F

Feature .. 131, 136
Feature modeling ... 136
Functional requirement 20

G

Goal, question, metric 159

H

Heavyweight requirements engineering
 ... 169

I

Impact analysis ... 97
Implicit documentation of traceability .. 104
Iteration ... 184
Iterative requirements engineering 168

K

Kano model .. 66

L

Lightweight requirements engineering . 169

N

Non-functional requirement 21

P

PDCA .. 176
Performance factor ... 66
Planning poker ... 62
Post-requirements-specification

traceability .. 98
Pre-requirements-specification traceability

 .. 98
Prioritization ... 54

206
 Inde
x

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 206/ 239

Prioritization matrix according to Wiegers
 ... 68

Prioritization technique 59
Priority .. 54
Process key figure .. 148
Product backlog .. 185
Product family ... 125
Product key figure.. 148
Product line .. 125
Projective view ... 49

Q

Quality requirement ... 20

R

Ranking ... 60
Release management 81
Reporting ... 145
Requirements artifact 19
Requirements attribute 32
Requirements branch 83
Requirements change 93
Requirements configuration 80
Requirements Engineer vii
Requirements engineering 10
Requirements engineering process 165
Requirements Information Model 20, 26
Requirements landscape 19
Requirements management 10
Requirements management plan vii, 12
Requirements Manager vii
Requirements triage .. 60

S

Scrum .. 184
Selective view ... 49
Single-criteria classification 61
Source analysis ... 97
Sprint ... 184
Sprint backlog .. 185
Status .. 74
Story maps .. 190

T

Tool .. 193
Top-ten technique ... 61
Traceability .. 96
Traceability graph .. 110
Traceability matrix .. 107
Traceability strategy 112
Traceability table .. 108
Twin peaks model ... 23
Two-criteria classification 63

U

Upfront requirements elicitation 168
User story .. 185

V

Value benefit analysis 236
Variability .. 126
Variant .. 126
Variant Management 125
Variation point ... 126
Version ... 75
Version control ... 74

Annex A: Template for a Requirements
Management Plan

As mentioned in the introduction to our handbook for IREB Certified Professional for
Requirements Engineering Advanced Level "Requirements Modeling", the requirements
manager must plan the requirements engineering process at the beginning of a project. The
requirements manager documents the results of these considerations in a requirements
management plan (RMP). Over the course of this book, we have discussed the decisions that
have to be taken and, using a case study, created excerpts from an example requirements
management plan. As a summary, this annex now presents a template for a requirements
management plan, the respective chapter headings, and a short description for each chapter.
As the requirements manager, you can create your requirements management plan according
to this schema.

208 Annex A: Requirements Management Plan Template

<Your name>

Requirements Management
Plan for <your project>

Based on:

IREB Certified Professional for Requirements Engineering

Advanced Level Requirements Management

Practitioner | Specialist

Annex A: Requirements Management Plan Template 209

Handbook IREB Certified Professional for Requirements Engineering
Advanced Level Requirements Management - Version 2.0.0 Page 209/ 239

Table of Contents

1 The Requirements Engineering and Requirements Management Process

2 Requirements Engineering and Requirements Management Tools

3 Requirements Information Model

4 Attribute Schema

5 Prioritization

6 Traceability

7 Views and Reports

8 Versioning

9 Change Process

10 Variant Management

210 Annex A: Requirements Management Plan Template

1 The Requirements Engineering and
Requirements Management Process

In this chapter, define the process that you want to use to elicit, document, validate, negotiate,
and manage requirements. To do so, define the following parameters:

▪ Timing of the elicitation (upfront or iterative)

▪ Level of detail of the documentation, that is, the highest level of detail used for the
specification (with the two extremes, heavyweight versus lightweight specification)

▪ Incorporation of changes, in particular: change request versus product backlog

▪ Allocation of responsibility

Document the process as an activity diagram, a RACI matrix, or Gantt diagram, for example.

Furthermore, document how the requirements engineering process will be monitored (e.g.,
the report and key figures used). Actions for process improvement can also be planned here,
for example Lessons Learned analyses after the end of the project.

! For more details about the content, see Chapter 9 of the handbook.

2 Requirements Engineering and Requirements
Management Tools

Define which tool or tools are to be used in your project to support the requirements
engineering process. Alternatively, the tools can be documented in a process model.

!
For more details about tools and in particular, tool selection, see Chapter 11 of the
handbook.

3 Requirements Information Model

In this chapter, define your requirements landscape and describe how you want to document
your requirements. This includes, for example:

▪ Which types of requirements do you want to consider?

▪ How do you want to document these requirements?

▪ To what level of detail will you describe the requirements and which levels of detail
should be considered?

▪ Which level of formality must your requirements reach?

This information can be documented in the form of a requirements information model (RIM),
for example.

Annex A: Requirements Management Plan Template 211

! For more details about the content, see Chapter 2 of the handbook.

4 Attribute Schema

In this chapter, document the attributes that your requirements should have, using, for
example, a table or information model.

▪ Name of the attribute

▪ Meaning

▪ Person responsible

▪ Permissible values

▪ Default value

▪ Mandatory field

▪ Dependencies between attributes

The attributes can differ depending on the requirement type or level of detail. The attribute
schema also includes attributes that are to be used for prioritizing the requirements.

! For more details about the content, see Chapter 3 of the handbook.

5 Prioritization

At the beginning of the project, document the criteria that you want to use for prioritization.
Prioritization is generally necessary to allow you to work to a specific schedule or budget, or
in case of doubt, even both. In this chapter, define the criteria to be used to prioritize your
requirements, when they are to be prioritized, by whom, and the prioritization method to be
used.

! For more details about the content, see Chapter 4 of the handbook.

6 Traceability

In this chapter, document the traceability strategy: the traceability goal, usage strategy,
recording strategy, and the project-specific traceability model.

! For more details about the content, see Chapter 6 of the handbook.

212 Annex A: Requirements Management Plan Template

7 Views and Reports

Based on the attributes for requirements described in Chapter 4, in this chapter, you can
define the required views and their content. Here, you also describe who (which stakeholders)
needs each respective view when and for what reason (goal). The content of the view is
created, for example, by filtering and sorting the requirements according to attributes.

Here, you also define which (requirements-based) reports are to be created and when they
are to be created. For each report, the report recipient and the goal of the report are
documented, for example in tabular form. The derivation of report content from goals can be
represented graphically as a goal, question, metric tree. You also define how this content can
be determined or calculated from which attributes, and how the content is presented (e.g., the
specific graphical form of presentation). The specification can also be documented in the form
of a report template or view.

! For more details about the content, see Chapters 3 and 8 of the handbook.

8 Versioning

Here, document how you want to version requirements and documents in your project. Define
the statuses that a requirement may take, how the status transitions are to take place, and
who is permitted to change the status of requirements artifacts.

In addition, define the basis for creating a requirements baseline and what the creation of such
a baseline means for the subsequent requirements management process—for example,
following a requirements baseline, changes are accepted only via a change management
process. In the requirements management plan, define how you want to handle changes in the
project, how changes are to be documented, whether there is a change committee, who makes
up this change committee, etc.

! For more details about the content, see Chapter 5 of the handbook.

9 Change Process

In this chapter, describe your change management process and the associated documents.
Here, describe who can request changes to requirements, and how changes are requested,
evaluated, and decided—that is, by whom, when, and according to which criteria. The change
process can also include a template for a change request which defines the information that
has to be determined and documented for a change request.

! For more details about the content, see Chapter 5 of the handbook.

Annex A: Requirements Management Plan Template 213

10 Variant Management

In this chapter, define whether and how you want to document variability—that is, variation
points, variants, and their dependencies—in your requirements. You can do this for example
in text form, as an orthogonal model, or as a feature model.

! For more details about the content, see Chapter 7 of the handbook.

Annex B (Tool Selection)

In this annex, we describe some criteria for tool selection. These criteria originate on the one
hand from literature, and on the other hand, from the requirements management plan created
step by step in this handbook and the question of which of the activities, processes, and
techniques described in the requirements management plan should/could be supported by a
management tool. For this purpose, we have created a criteria catalog and applied it using
three completely different tools. These tools each represent one tool category. The evaluations
are based on the status at 2015 and become obsolete, of course, as soon as the tools are
developed further. Naturally, we do not recommend Microsoft Word ® and Microsoft Excel ®
for requirements management because there are many requirements management activities
that they do not support well.

We hope you enjoy studying these criteria and trying them out.

Annex B: Tool Selection for Requirements Management 215

1 The Challenges of Introducing and Using
Tools

Just like the introduction of any application, the introduction of a (new) requirements
management tool is a topic which, in addition to technical and methodological aspects, must
above all consider human aspects, as it is humans that will have to subsequently work with
the tool. In the long term, only an accepted tool that provides the user with a direct or indirect
benefit will be accepted and used correctly. When a requirements management tool is
introduced, social, cognitive, organizational, and corporate aspects must be taken into
account.

To illustrate this, we want to describe examples of some of the challenges of introducing a
tool. We have assigned these examples to the views introduced in [PoRu2011a].

Provider view

▪ Market position: For a company, the selection of the tool is generally a long-term
decision because the introduction of the tool often also necessitates organizational
changes. When a tool is selected, this creates a tie to the provider of the tool. If this
provider or the tool soon ceases to exist, good advice literally becomes expensive.

▪ Trends and updates: It may be desirable for the provider to support future trends and
offer these in the tool. However, following trends may also be undesirable if the provider
changes their strategy completely and decides to pursue, for example, only agile
procedures.

User view

▪ User acceptance: The tool must be available for many user groups to be able to reflect
the development cycle (marketing, development, finance department, etc.). User
acceptance is therefore extremely important to ensure that the tool is subsequently used
correctly. Not only must your work processes be supported, this support must also be
provided in an efficient and ergonomic way. In particular, the tool must also be user-
friendly.

Economic view

▪ The license model of the software must fit the usage profile and the cost structure of
the company.

▪ The operability of the software must be compatible on the one hand with the cost
structure, and on the other hand with the existing IT infrastructure of the company.

216 Annex B: Tool Selection for Requirements Management

Product view

▪ The capabilities of the software must satisfy the requirements of the tool. On the one
hand, this means that criteria of the requirements management plan (assignment of
attributes, view creation, traceability, reporting, etc.) relevant for you must be fulfilled.
On the other hand, it also means that the tool must deliver the required user support in
all areas. It is generally a misconception to think that the primary issue is that a
functionality must be supported, regardless of how this is done, and the user will accept
whatever is offered. Let us take the example of traceability: if the tool supports the
creation of traceability relationships between artifacts in principle, but the creation of
these relationships is not user-oriented and does not save the user any time, these
relationships will probably not be set or will only be set unsatisfactorily. Given the
number of (possible) functional and non-functional requirements of the requirements
management tool, it is difficult to impossible to find the perfect tool. Therefore, you have
to prioritize your selection criteria cleverly and sacrifice only what is really
unimportant.

Project view

▪ Adaptability: No two projects are the same. In the same way that the requirements
engineering process and the requirements documents have to be adapted to the size and
other properties of the project, the tool must also support this adaptation. If it does not,
it can only be used in some projects and not in others.

Process view

▪ The tool follows the process: Before the tool is selected, the process must be clear and
established in the company, based, for example, on an existing requirements
management plan for the company. The tool helps only to support an existing process.
If there is no defined process, it is difficult to select a tool and this restricts the possible
subsequent requirements management procedures.

▪ Methodological knowledge: On its own, the use of a tool does not ensure that only
correct data or requirements are recorded. What it does do is support the recording and
maintenance of data. Therefore, when tools are used, it is essential that all persons
involved in the development process are sufficiently trained in documenting
requirements correctly.

▪ It must be possible to use the tool to map project-specific data models (requirements
information models). Prior standardization of the data models may be necessary to
ensure that tools can be exchanged.

Technical view

▪ Data exchangeability: In collaboration with other departments, partners, suppliers,
etc., data exchangeability is a particular challenge because the exchange between
heterogeneous requirements information models and different tools must be ensured.
It must also be possible to export and import data for migration to a new tool or tool
release.

Annex B: Tool Selection for Requirements Management 217

2 Criteria for Selecting a Requirements
Management Tool

Just like the introduction of any software in a company, the selection of a requirements
management tool raises the question of the requirements. What should the tool support? How
should the integration take place? Who should operate the software? Are there existing
systems that have to be replaced? Is a migration necessary? And so on.

Here, literature offers a number of helpful reference points, checklists, and questions that can
support you in introducing a requirements management tool ([PoRu2011a], [CNAT2011],
[CNAT2012], [ISO24766], [Eber2012]).

[PoRu2011a] proposes a view-based process for considering the requirements from all
relevant stakeholders for the tool (analog to introducing software).

▪ Provider view: Amongst other things, the provider view considers the market position
and the service options (in the sense of training, user support, company-specific
adjustments, etc.) that the tool provider offers. This view is necessary because the
introduction of tool support generally means a longer-term tie.

▪ User view: The user view considers the requirements that result from the view of the
different system users. These include, for example, requirements for role concepts,
multiple user capability, etc.

▪ Economic view: The economic view considers the entire costs as a full costing required
for the introduction and operation of the tool, and for the running costs for licenses and
support, etc.

▪ Product view: The product view considers the functionality that the tool to be introduced
requires in order to support requirements management. This includes, for example,
requirements for attribute assignment, creation of views, and traceability.

▪ Project view: The project view considers the extent to which the tool can support future
projects—for example, with regard to planning, reporting, etc.

▪ Process view: The process view considers requirements for the tool in terms of the
methodological support, for example, through suitable workflows. However, caution
must be taken here to ensure that it is not the tool that specifies the methodology.

▪ Technical view: The technical view considers requirements for operability, portability,
scalability, integration of, for example, test tools in an existing tool landscape, as well as
data exchange and data migration.

These views help you to define the requirements for your tool. Literature also offers numerous
checklists for tool selection, see [CNAT2011], [CNAT2012], [ISO24766], [Eber2012].

In this section, we explicitly address the aspects of requirements management that must be
supported for your company or project. In selecting these aspects, we therefore concentrate
primarily on the points that should be considered in your requirements management plan.

In the previous chapters of this book, you have learned how to create a requirements
management plan.

218 Annex B: Tool Selection for Requirements Management

You have either defined a specific plan for a project or an abstract plan for requirements
management in your company. To ensure that your requirements management plan is
supported in the best possible way, looking back over the previous chapters and your
requirements management plan, consider therefore, which criteria for tool selection are
particularly important to you and consider, for example, the following questions in your
evaluation:

▪ Does the tool support the implementation of your requirements information model?

o Are the different types of requirements supported?

o Are different requirements artifacts supported?

o Are different forms of presentation supported?

o Are different levels of detail supported?

o Can the requirements documented in the tool be exported in a structured and
readable form (e.g., as a requirements specification)?

▪ Does the tool support the creation of the required attributes and views?

o Are different attributes supported for each requirement type?

o Is the definition of value ranges for attributes supported?

o Can multiple attributes be selected?

o Can attribute value transitions be defined?

o Is the user supported with automatic values (e.g., date of creation, creator) when
entering information?

o Can default values be defined for attributes?

o Is there a differentiation between optional and mandatory attributes?

o Are dependencies between attributes supported?

o Can ad-hoc views be created?

o Can views created be saved?

o Can views be restricted using role concepts?

▪ Does the tool support the prioritization of requirements artifacts?

o Are ad-hoc prioritization methods supported?

o Are analytical prioritization methods supported?

o Can a history be maintained for prioritization decisions?

▪ Does the tool support version control for requirements?

o Are new versions of artifacts created automatically?

o Can different versions be compared with one another?

o Can the change reason be documented and traced?

o Do changes to attributes lead to new versions of the artifact?

o Can individual attributes be removed from the versioning?

o Is it possible to roll back to old requirements versions?

Annex B: Tool Selection for Requirements Management 219

o Can requirements configurations be created?

o Is it possible to roll back to old requirements configurations?

o Is a comparison of requirements configurations possible?

o Can requirements baselines be created?

o Is it possible to roll back to old requirements baselines?

o Is a comparison of requirements baselines possible?

▪ Does the tool support change management?

o Can a change management process be defined?

o Are change request templates offered or supported?

o Can change requests be created and processed based on roles?

o Is the processing and evaluation of change requests supported?

o Can the change requests be subsequently placed in a relationship to the
requirements to be changed through linking?

▪ Does the tool support the traceability strategy of the requirements management plan?

o Is traceability between artifacts supported?

o Can different relationship types be created?

o Can relationship types to artifacts be restricted to prevent all relationship types
being used in an uncontrolled way?

o Is linking to predecessor and successor artifacts (goals and test cases) possible
(keyword: tool integration)?

o Is a role-based maintenance of traceability relationships supported or can any
user create, change, or remove all relationships?

o Is traceability between textual and model-based artifacts supported (where
applicable, on a cross-tool basis)?

o How can traceability relationships be presented (matrix, table, graph, etc.)?

o Are impact analyses possible for changes, presenting the predecessor and
successor artifacts to the user?

o Over how many levels is an impact analysis possible?

o Can evaluations of traceability relationships be created (e.g., number of
relationships between test cases and requirements to the number of test cases
and requirements)?

220 Annex B: Tool Selection for Requirements Management

▪ Does the tool support the documentation of variability?

o Is the explicit documentation of variability supported?

o Is the implicit documentation of variability supported?

o Are relationships between variation points and variants supported?

o Is feature modeling supported?

o Are orthogonal traceability models supported?

o Is the derivation of specific products from the defined variability supported?

o Is it possible to search for variants and variation points?

▪ Does the tool support reporting as part of requirements management?

o Are there templates for defining reports?

o Can own reports be created?

o Is automated creation of reports (e.g., at certain points in time) supported?

o Can reports be exported, for example as a PDF file?

o Can reports be sent automatically?

o Can reports be printed?

▪ Does the tool support the definition of requirements engineering processes?

o Can workflows be defined for the defined requirements engineering activities
(e.g., documentation, check, acceptance)?

o Is the definition of roles, responsibilities, and (user) rights supported?

o Can company-wide process models, which are adapted in individual projects, be
mapped?

o Is parallel and role-based work supported?

o Are open item lists (and tasks) supported to document unclear points and tasks
and assign them to specific persons?

o Can decisions be documented (e.g., decision logs)?

o Can requirements engineering processes be checked (target/actual comparison
for process conformity)?

▪ Does the tool support agile methods?

o Are storyboards and Kanban boards supported?

o Are burndown charts supported?

o Are product backlogs and sprint backlogs supported?

o Are retrospectives supported?

Think about which of these points are relevant for you and weight the points for your project
for tool introduction. Based on the requirements management plan, you can create a
structured question list for your tool selection.

Annex B: Tool Selection for Requirements Management 221

Using this list, evaluate the selected tools in terms of the requirements management functions
to be supported. The important thing is that the tool satisfies your requirements engineering
processes.

222 Annex B: Tool Selection for Requirements Management

3 Analyzing Selected Tools Using the
Requirements Management Plan
Evaluation Criteria

In this chapter, based on the criteria introduced in the previous section, we will perform an
example tool evaluation. To do this, we have intentionally dedicated our example to three very
different classes of tools.

▪ Standard office applications

▪ Systems engineering tools

▪ Requirements management tools

It is not our intention to look closely at the actual result, and particularly not to create an
independent evaluation of requirements management tools. Instead, we want to give you an
insight into how these criteria can be applied and used for tool selection.

In the class of standard office applications, we will look at the most widespread tool, which is
used worldwide to record and subsequently manage probably more than half of all
requirements. even though these applications by far do not support the required properties
of requirements management tools mentioned at the beginning [PoRu2011a] (Section 9.3).
Nevertheless, this type of documentation and management, with some methodological and
organizational guidelines for assigning attributes, versioning, and traceability, is better than
no documentation. The massive advantage of these applications lies in the fact that they are
widespread, that is, the initial existence, the existing user acceptance, as well as the advantage
that almost everyone knows how to use these applications and the files can be exchanged
easily between parties involved via email. Word, for example, offers the advantage that
specifications can be structured exactly as required. With Excel, just a little knowledge also
allows you to create attributes and views. Compared to Word, Excel has the decisive
advantage that you can filter, sort, evaluate, etc. based on the defined attributes. To create a
versioning, you can also use smaller macros to make life easier so that you can create new
versions of a requirements artifact at the push of a button. Figure 49 presents an example of
an Excel-based requirements list with different attributes. Here, the line highlighted gray
reflects an old version of a requirement which is presented below as a current and revised
version.

Annex B: Tool Selection for Requirements Management 223

Figure 49: Screenshot of an Excel-based requirements list

However, creating structures and hierarchies is more difficult in table-based applications such
as Excel than it is in Word. In Table 12: Analysis of selected tools: results table, we look at the
capabilities of Word and Excel for requirements management in more detail.

The second class of tools considered here is also not a classic requirements management tool,
but rather an application originally used for tracking issues. Using this class, the main thing
we want to point out is that before you introduce a requirements management tool in your
company, you should look left and right and check which other tools are already being used
and could potentially even be used for requirements management. Through its adaptability,
the issue tracking system Jira from Atlassian (www.atlassian.com) offers many more options
than just tracking issues. In Jira, you can create different requirements artifacts with separate
attributes, define workflows for status transitions, for example, link requirements artifacts to
one another, and so on. In addition to the standard scope of functions, Jira offers plug-ins to
support agile project methods such as scrum, for example. Furthermore, Confluence offers a
web-based application for organizing documents, meeting minutes, decisions, or for creating
reports and describing the overall project context. Confluence can be seamlessly integrated
into Jira. The use of Jira and Confluence for requirements management is described in
[Syra2014], for example. Figure 50 shows two screenshots in Jira: on the left, a template for
creating requirements with the defined attributes, and on the right, an example view of
requirements. Figure 51 shows an example of how links can be presented in Jira (Issue Links).
In the example, the requirement is connected to two further requirements via the relationship
type "blocks", and to two other requirements via the relationship type "relates to". These
hyperlinks allow bidirectional navigation between the artifacts.

http://www.atlassian.com/

224 Annex B: Tool Selection for Requirements Management

Figure 50: Example template for recording requirements (left) and a status view of requirements (right)

Figure 51: Example of traceability relationships for a requirement in Jira

Our third class of requirements management tools is dedicated to ProR/RMF, an open source
tool for requirements engineering with Eclipse. The software is available to download free of
charge, along with documentation on the tool, on the Internet at: http://eclipse.org/rmf,
www.pror.org, or the download page here: http://eclipse.org/rmf/download.php. ProR
normally requires the installation of Eclipse. There was a stand-alone version that did not
need Eclipse. However, this is no longer supported by the RMF project (RMF stands for
Requirements Modeling Framework). A stand-alone ProR variant that is still available to
download free of charge, however, is formalmind Studio from Formal Mind GmbH:
http://www.formalmind.com/studio. formalmind Studio contains enhancements called ProR
Essentials that make work more efficient. Documentation for this tool can be found here:
http://wiki.eclipse.org/RMF, and the RMF Guide here:
http://download.eclipse.org/rmf/documentation/rmf-latex/main.html.

http://eclipse.org/rmf
http://www.pror.org/
http://eclipse.org/rmf/download.php
http://www.formalmind.com/studio
http://wiki.eclipse.org/RMF
http://download.eclipse.org/rmf/documentation/rmf-latex/main.html

Annex B: Tool Selection for Requirements Management 225

The tool is subject to constant further development. To find out how to implement your own
ideas, see:
https://wiki.eclipse.org/RMF/Contributor_Guide/Presentations.

Figure 52 shows a screenshot of a hierarchical requirements list in formalmind Studio. The
attributes themselves can be defined, as well as the types of links that establish traceability
between requirements. As you can see in Table 12: Analysis of selected tools: results table,
formalmind Studio currently supports primarily basic requirements management
functionality. However, there are a number of Eclipse plug-ins that can be used to integrate
the tool and enhance its functions.

Figure 52: Screenshot from formalmind Studio: Requirements hierarchy with two attributes (costs and priority), as well

as links between the features and use cases.

Table 12: Analysis of selected tools: results table gives an overview of the evaluation. We have
used only three values for the evaluation: "Yes" means that the tool supports the criterion
completely; "Partially" means that the tool supports the criterion with some limitations; and
"No" means that the tool does not support this criterion. The evaluation here is not intended
to be a tool recommendation, but rather a criteria template for evaluating tools that has been
applied for three non-typical requirements management tools by way of example.

https://wiki.eclipse.org/RMF/Contributor_Guide/Presentations

226 Annex B: Tool Selection for Requirements Management

 Excel/Word JIRA/Confluence ProR/formalmind Studio

Criterion Eval. Justification Eval. Justification Eval. Justification

Does the tool support the implementation of your requirements information model?

Are the different types of
requirements supported?

Yes No limitation, provided
they can be presented
textually

Yes Via attributes Yes No limitation, provided
they can be presented
textually

Are different requirements
artifacts supported?

Yes No limitation, provided
they can be presented
textually

Yes Via new issue types and
own attributes and views

Yes

Are different forms of presentation
supported?

Partially Text and templates Partially Text and templates Partially Text only, but elements of
diagrams can be
referenced, e.g., on
integration with Rodin

Are different levels of detail
supported?

Partially Via document structures or
attributes

Partially Via sub-requirements and
linking

Yes Through hierarchical
linking, which can be
changed flexibly using drag
& drop

Can the requirements documented
in the tool be exported in a
structured and readable form (e.g.,
as a requirements specification)?

Yes Already recorded as a
document

Partially Standard export is purely
table-based

Partially As HTML file and as reqIF
file

Does the tool support the creation of the required attributes and views?

Are different attributes supported
for each requirement type?

Yes Partially Dependent on the
realization

Yes You can define any number
of requirement types, each
with different attributes.
These can be mixed within
an artifact.

Is the definition of value ranges for
attributes supported?

Yes Value ranges can only be
mapped usefully in Excel

Yes Yes Value ranges for numbers
as well as value lists

Annex B: Tool Selection for Requirements Management 227

 Excel/Word JIRA/Confluence ProR/formalmind Studio

Criterion Eval. Justification Eval. Justification Eval. Justification

Can multiple attributes be
selected?

No Maximally as a value list Yes In different ways
(checkbox, label, list
selection)

Yes For attributes for which
value lists are defined

Can attribute value transitions be
defined?

No In Excel, could be defined
as a maximum via a macro

Partially For attributes such as the
status, explicit statuses and
transitions can be defined

No

Is the user supported with
automatic values (e.g., date of
creation, creator) when entering
information?

Partially In Word and Excel, entries
could be pre-labeled

Yes Partially Default values are
supported

Can default values be defined for
attributes?

Partially In Word and Excel, entries
could be pre-labeled

Yes Yes

Is there a differentiation between
optional and mandatory
attributes?

Partially Possible only through
special marking

Yes No

Are dependencies between
attributes supported?

No No No Possible using the Eclipse
Validation Framework

Can ad-hoc views be created? No Yes Partially Yes, but always only one:
attributes can be displayed
or hidden, filtering by
attributes is possible,
sorting is not possible

Can views created be saved? No Yes Yes But always only one

Can views be restricted using role
concepts?

No Yes No

228 Annex B: Tool Selection for Requirements Management

 Excel/Word JIRA/Confluence ProR/formalmind Studio

Criterion Eval. Justification Eval. Justification Eval. Justification

Does the tool support the prioritization of requirements artifacts?

Are ad-hoc prioritization methods
supported?

No No No

Are analytical prioritization
methods supported?

No No No

Can a history be maintained for
prioritization decisions?

No No No

Does the tool support version control for requirements?

Are new versions of artifacts
created automatically?

No The only option is through
tracking changes

Yes No Possible via an Eclipse
plug-in for version control

Can different versions be
compared with one another?

Partially To a limited extent, via the
track changes function in
Word; no option in Excel

Yes No Possible via an Eclipse
plug-in for version control

Can the change reason be
documented and traced?

Partially A reason can be recorded
in pure text form at artifact
and/or document level

Yes Changes can be
documented for example
via comments or separate
issue types

Partially Would be possible in a
separate attribute

Do changes to attributes lead to
new versions of the artifact?

No Manual versioning only Yes No Possible via an Eclipse
plug-in for version control

Can individual attributes be
removed from the versioning?

No Manual versioning only No No Possible via an Eclipse
plug-in for version control

Is it possible to roll back to old
requirements versions?

Partially To a limited extent, via the
track changes function in
Word; no option in Excel

No Previous versions can only
be presented, but not
rolled back

No Possible via an Eclipse
plug-in for version control

Annex B: Tool Selection for Requirements Management 229

 Excel/Word JIRA/Confluence ProR/formalmind Studio

Criterion Eval. Justification Eval. Justification Eval. Justification

Can requirements configurations
be created?

No As a maximum, a
requirements
configuration can be
created as a document
version

No No Possible via an Eclipse
plug-in for version control

Is it possible to roll back to old
requirements configurations?

No No No Possible via an Eclipse
plug-in for version control

Is a comparison of requirements
configurations possible?

No No No Possible via an Eclipse
plug-in for version control
and EMF Compare

Can requirements baselines be
created?

No As a maximum, a baseline
can be created as a
document version

No No Possible via an Eclipse
plug-in for version control

Is it possible to roll back to old
requirements baselines?

No No No Possible via an Eclipse
plug-in for version control

Is a comparison of requirements
baselines possible?

No No No Possible via an Eclipse
plug-in for version control
and EMF Compare

Does the tool support change management?

Can a change management
process be defined?

No Partially If changes are created as a
separate issue type, a
workflow could be defined
for this

No

Are change request templates
offered or supported?

No Partially If changes are created as a
separate issue type,
separate attributes for a
change request are
possible

No

230 Annex B: Tool Selection for Requirements Management

 Excel/Word JIRA/Confluence ProR/formalmind Studio

Criterion Eval. Justification Eval. Justification Eval. Justification

Can change requests be created
and processed based on roles?

No Yes No

Is the processing and evaluation of
change requests supported?

No Partially The processing can be
reflected via a workflow;
the evaluation itself must
be manual

Partially Change requests can be
documented as
requirements

Can the change requests be
subsequently placed in a
relationship to the requirements to
be changed through linking?

No Yes Partially Yes, if the change requests
are managed as
requirements

Does the tool support the traceability strategy of the requirements management plan?

Is traceability between artifacts
supported?

Partially Only via the manual
maintenance of textual
references, hyperlinks, or
matrices

Yes Via linking of issue types No

Can different relationship types be
created?

Partially Possible in pure text form Yes Yes

Can relationship types to artifacts
be restricted to prevent all
relationship types being used in an
uncontrolled way?

No No No

Is linking to predecessor and
successor artifacts (goals and test
cases) possible (keyword: tool
integration)?

Partially Only via manual textual
references

Yes If all artifacts are described
in Jira

Yes If all artifacts are stored in
formalmind Studio or
through integration with
Rodin

Annex B: Tool Selection for Requirements Management 231

 Excel/Word JIRA/Confluence ProR/formalmind Studio

Criterion Eval. Justification Eval. Justification Eval. Justification

Is a role-based maintenance of
traceability relationships
supported or can any user create,
change, or remove all
relationships?

No No All users can do the same
thing

Is traceability between textual and
model-based artifacts supported
(where applicable, on a cross-tool
basis)?

Partially Via textual references,
URLs, and embedded
objects

Partially Via textual references,
URLs, and attachments

Yes There is an integration with
the modeling tool Rodin

How can traceability relationships
be presented (matrix, table, graph,
etc.)?

 In every form via manual
effort

 Via hyperlinks Via hyperlinks

Are impact analyses possible for
changes, presenting the
predecessor and successor
artifacts to the user?

No Partially Via hyperlinks Partially Via hyperlinks

Over how many levels is an impact
analysis possible?

 Only the directly linked
artifact is ever visible

 Only the directly linked
artifact is ever visible

 Only the directly linked
artifact is ever visible

Can evaluations of traceability
relationships be created (e.g.,
number of relationships between
test cases and requirements)?

No No No

Does the tool support the documentation of variability?

Is the explicit documentation of
variability supported?

No No No

232 Annex B: Tool Selection for Requirements Management

 Excel/Word JIRA/Confluence ProR/formalmind Studio

Criterion Eval. Justification Eval. Justification Eval. Justification

Is the implicit documentation of
variability supported?

Partially Implicit documentation of
variability can be
supported via templates

Partially Implicit documentation of
variability can be
supported via attributes

No

Are relationships between
variation points and variants
supported?

No No No

Is feature modeling supported? No No No

Are orthogonal traceability models
supported?

No No No

Is the derivation of specific
products from the defined
variability supported?

No No No

Is it possible to search for variants
and variation points?

No Partially If mapped by separate
attributes

No

Does the tool support reporting as part of requirements management?

Are there templates for defining
reports?

No As a maximum, separate
Word templates

No No

Can own reports be created? Yes Own reports can be
created in Word and Excel

No No Views only

Is automated creation of reports
(e.g., at certain points in time)
supported?

No No No

Annex B: Tool Selection for Requirements Management 233

 Excel/Word JIRA/Confluence ProR/formalmind Studio

Criterion Eval. Justification Eval. Justification Eval. Justification

Can reports be exported, for
example as a PDF file?

Yes From Office 2010, a
document can be saved as
a PDF

No Yes Only in HTML

Can reports be sent automatically? No No No

Can reports be printed? Yes No Yes In HTML format via the
browser

Does the tool support the definition of requirements engineering processes?

Can workflows be defined for the
defined requirements engineering
activities (e.g., documentation,
check, acceptance)?

No Yes No

Is the definition of roles,
responsibilities, and (user) rights
supported?

No Yes No

Can company-wide process
models, which are adapted in
individual projects, be mapped?

Partially Specification templates can
be created via document
templates

No No

Is parallel and role-based work
supported?

No Yes No

Are open item lists (and tasks)
supported to document unclear
points and tasks and assign them
to specific persons?

No Not with direct
assignment; in principle,
open item lists can of
course be maintained

Partially Via the creation of tasks,
which are placed in a
relationship to
requirements

No

234 Annex B: Tool Selection for Requirements Management

 Excel/Word JIRA/Confluence ProR/formalmind Studio

Criterion Eval. Justification Eval. Justification Eval. Justification

Can decisions be documented (e.g.,
decision logs)?

No Partially Via attachments to a
requirement or linking to
Confluence

No

Can requirements engineering
processes be checked
(target/actual comparison for
process conformity)?

No No No

Does the tool support agile methods?

Are storyboards and Kanban
boards supported?

No Yes Via the Jira "Agile" plug-in,
both Kanban and
storyboards

No

Are burndown charts supported? No Yes Via the Jira "Agile" plug-in No

Are product backlogs and sprint
backlogs supported?

No Yes Via the Jira "Agile" plug-in No

Are retrospectives supported? No Yes Via the Jira "Agile" plug-in No

Table 12: Analysis of selected tools: results table

At this point, note again that it was not our intention to perform a comprehensive evaluation of tools or these selected tools; we have
used these tools only to demonstrate our requirements management-based selection criteria in the application. Therefore, we apologize
if we have estimated certain functions of one of the tools incorrectly.

Annex C (Earned Value Analysis)

The earned value analysis (also referred to as the value benefit analysis) [Kerz2003],
[Wann2013a], [Wann2013b] follows the status of a project based on the progress of the
results and the cost consumption. The progress (degree of completion or earned value) is
compared with the planned progress (planned value) for this point in time and also with the
budget consumed to date (actual cost).

With this method, you can detect deviations in the actual project progress compared to the
schedule or the budget at an early stage. If the project is not on plan, then either measures
must be taken to enable the project to be completed on plan, or the earned value analysis can
be used to calculate the delivery delay and the cost overspend in advance.

The earned value analysis requires the following four key figures of the project:

▪ Budget (budget at completion BAC): The budget available for the entire project. In the
earned value analysis, the assumption is that this budget corresponds to the total costs
and the planned value (value of benefit) of the project at the end of the project. If this is
not the case, use the planned total costs for your calculation. Three factors are added to
this total volume of the project, and the values for these three factors have to be
determined at the respective time of reporting.

▪ Planned degree of completion (planned value, PV): Here, you specify in % the proportion
of the project that should be completed at the current point in time. The figure is
calculated as the quotient of the planned work volume and the total volume of the
project.

▪ Degree of completion (earned value, EV): Here, you specify in % the proportion of the
project that is actually completed at the current point in time.

▪ Costs to date (actual cost, AC): Here, you specify the costs that have already arisen. The
cost index is the quotient of the costs to date and the total budget of the project.

These key figures tell you what part of the result has already been completed and what
proportion of the budget has been used to do so. You can therefore calculate whether the
project is on schedule and whether work is being performed efficiently—that is, whether the
result created matches the budget consumed. If the cost index matches the degree of
completion, x% of the resources has been used to complete x% of the results and the project
is within budget. If the degree of completion matches the planned degree of completion, the
project is on schedule. Based on the size of any deviations from the plan, you can create
forecasts of how late the project will probably be completed and what the cost overspend will
be.

236 Annex C: Earned-Values Analysis

To check the delivery reliability, calculate as follows:

Compare the earned value with the planned value for the same point in time, that is, compare
the actual degree of completion with the planned degree of completion. If both are the same,
you are on plan. If the actual degree of completion is higher than the planned degree of
completion, that is favorable as you will then probably finish earlier than planned. However,
the opposite is the most common case: the actual degree of completion is lower than the
planned degree of completion. The project is therefore behind schedule.

The delay gives rise to a late delivery date for the planned results. If the delivery date remains
fixed in place, then the delay means that the project scope is restricted and part of the delivery
scope may be delivered after the delivery date.

To check that costs are within budget, calculate as follows:

First, calculate the cost index. This is the quotient of the costs to date and the total budget of
the project in %. Then compare the actual degree of completion with the cost index. The
creation of 26% of the project result should consume a maximum of 26% of the total budget.
However, if the degree of completion is smaller than the cost index, then the budget will
probably be exceeded.

There are various approaches for adapting the time and cost plans to reality, that is, for
anticipating the delay and budget overspend:

1. Keep the original plan: The assumption is that the deviation that has already occurred
has no effect and the delay or budget overspend can be recuperated. The end date and
budget therefore remain the same. However, this optimistic hope is rarely fulfilled even
with the most sophisticated of justifications.

2. Add the delay or increase in costs: The delay or cost overspend that has already arisen
is added to the planned values if you assume that the rest of the project will progress
according to plan. This assumption should also be justified. Here, you calculate as
follows:

o Date forecast: If the actual degree of completion (e.g., 26%) has been achieved
seven days later than planned, the delay is seven days. The overall project will be
finished with a delay of seven days. Seven days are added to the end date.

o Cost forecast: If, for example, 30% of the budget (= cost index) has been used to
achieve the actual degree of completion (e.g., 26%), at the end, the project will
probably consume 104% of the planned total budget. The probable total costs
are calculated by multiplying the total budget (BAC) by 1.04.

3. Linear forecast: This pessimistic assumption is usually the most realistic. The
assumption is that if the first part of the project is already a certain percentage more
expensive than estimated, there is a systematic error in the estimation and the
remaining work will also be correspondingly more expensive.

o Date forecast: If the actual degree of completion (e.g., 26%) has been achieved
seven days later than planned, that is 33 days instead of 26 days, for example.
The rule of three is then applied: if a 26% degree of completion corresponds to a
duration of 33 days, how long will 100% take? The calculation is as follows: 33
days x 100%/26% = 127 days. A duration of 100 days was originally planned.
The delay is therefore 27 days.

Annex C: Earned-Values Analysis 237

The same result is obtained from an easier calculation: 26% degree of completion
corresponds to a delay of 7 days, 100% degree of completion is therefore 7 days
x 100%/26% = 27 days delay. These 27 days are added to the original delivery
date to calculate the probable delivery date. The result is almost an entire month.

o Cost forecast: If, for example, 30% of the budget (= cost index) has been used to
achieve the current degree of completion (e.g., 26%), the rule of three calculation
is as follows: if 26% degree of completion uses 30% of the budget, 100% degree
of completion is calculated as 30% of the budget x 100%/26% = 115.4%. This
means that at the end, the project costs will probably be 115.4% of the previously
planned total budget. Therefore, in the worst case, the small overspend to date
will add up to a much larger amount at the end of the project.

The best way to perform an earned value analysis for the requirements engineering and
requirements management activities is by using the requirements management tool, because
the requirements management tool primarily contains the information about the
requirements and their status. However, if the requirements management tool manages the
entire development process (in the sense of requirements-based project management), an
earned value analysis can be performed for the entire project with the data from the
requirements management tool. For this purpose, the status attribute of the requirements
must map the entire lifecycle, for example.

To support the earned value analysis with a requirements management tool, the tool must
support the management of the following content:

▪ For each requirement, its entire lifecycle is mapped and managed in a status attribute—
that is, from the elicitation, through the agreement on a specific release, through
implementation, testing, and delivery. A degree of completion is assigned to each status
value, as shown in Table 13, for example.

▪ For each requirement, its planned implementation effort is defined in an attribute
"Effort". These efforts are then used as weighting factors for the determination of the
actual degree of completion of the overall project. On its own, the number of
requirements completed does not correspond to the degree of completion as each
requirement has a different implementation effort.

▪ For an earned value report, the percentage degree of completion is calculated
respectively for each requirement, as shown in Table 13, for example. The degree of
completion is then determined as a weighted average of the degrees of completion of all
requirements, whereby the requirements are averaged according to their planned
budget. Requirements with a high effort therefore have a heavier weighting. If this is not
possible, as an alternative, only the completed requirements can be calculated as
completed (100%), and all others are calculated as incomplete (0%).

The calculation and all other analyses remain the same. The formula for the degree of
completion remains the same, and the same applies for all analyses. However, when
defining the planned value for the degree of completion, you must also consider how the
actual degree of completion will subsequently be determined.

238 Annex C: Earned-Values Analysis

If only the completed requirements are evaluated as "finished", at the beginning of the
project there will initially be no measurable progress. In contrast, at the end of the
project, a lot of requirements will be finished within a short time. However, this type of
plan progression does not allow deviations from the plan to be detected so early. We
therefore recommend a proportionate consideration of requirements in progress.

▪ To determine the actual budget consumed at any point in time, the costs incurred to date
must be managed in an attribute for each requirement. However, this type of
requirements-based cost recording in a requirements management tool could,
depending on the company, lead to a duplicate recording and could appear pedantic to
the developers. Therefore, the budget consumed can also be determined from another
tool (time recording, project management tool, Controlling) at any point in time.

Additional information that is not requirements-based but is used for the earned value report
is the planned degree of the completion of the project at a point in time and the total budget
for the project (budget at completion), which must also be managed in a tool if the earned
value report is calculated.

The following table (Table 13) shows the degrees of completion of requirements, dependent
on the status, according to various authors. [RuSo2009] evidently refers only to the elicitation,
documentation, and agreement process for the requirement. Therefore, the degree of
completion of 100% corresponds to the status "Approved", while in [Eber2012], this status
corresponds to 0% because here, the project progression is considered after the requirement
approval. The percentages in the left column are therefore suitable for an earned value
analysis of requirements engineering, while the status in the middle column is suitable for the
earned value analysis of the implementation. We want to cover the entire project cycle, and
therefore we propose a further scale on the far right.

To support the earned value analysis, for each requirement, the attributes must be included
and maintained in the attribute schema, as presented in Table 13. "Planned costs", that is, the
costs estimated for each requirement, are entered once. For each point in time to be
considered, the time-specific values "Planned value", "Actual costs", and "Status" must be
maintained. The degree of completion of the requirement is calculated automatically from the
respective status that a degree of completion is assigned to (see Table 14). The value achieved
for a requirement is calculated from the degree of completion multiplied by the effort. The
values for the overall project are therefore calculated as follows:

▪ Budget at completion = total of planned costs for all requirements

▪ Actual costs = total of the actual costs for all requirements

▪ Status: determined manually as the result of the earned value analysis and its forecasts,
but also the evaluation of the project manager with regard to whether delays that have
occurred can be compensated for

▪ Completion: the degree of completion of the project is the weighted average value of
the degrees of completion of the requirements, weighted by effort. In this example:
(€4000 x 50% + €2000 x 10% + €2000 x 100% + …)/€30000. The result is a percentage.

▪ Value achieved = total of the values achieved for all requirements

Annex C: Earned-Values Analysis 239

Requirement
Status

[Rupp &
Sophist 2004]

[Eber2012] [RuSo2009] Our Proposal

 Degree of
completion in
relation to the
elicitation,
documentation, and
approval process

Degree of
completion in
relation to
implementation

Degree of
completion in
relation to the overall
project

Degree of
completion in
relation to the overall
project

Created 0 % 20 % 10 %

Signed off 30 % 30 %

Acceptance
criteria complete

60 %

Consistent with
object model

75 %

Consistent with
prototype

90 %

Verified/checked 95 % 40 % 20 %

Approved/agreed/
released

100 % 0 % 50 % 25 %

Drafted 60 %

In implementation 10 % 50 %

Implemented 50 % 80 % 70 %

Tested/completed 100 % 100 % 100 %

Table 13: The degrees of completion of requirements, dependent on the status

Date: Today Effort/Planned

Costs
Actual Costs Status Completion Value

Reached

Requirement 1 4,000 € 1,800 € In
implementation

50 % 2,000 €

Requirement 2 2,000 € 150 € Created 10 % 200 €

Requirement 3 2,000 € 2,100 € Completed 100 % 2,000 €

…

Overall
project

30,000 € 9,500 € Yellow 30 % 9,000 €

Table 14: Assignment of attributes for the requirements, to support the earned value analysis

